Chat with an Expert


Density gradient medium for the isolation of mononuclear cells

More Views

From: 82 USD


* Required Fields

Catalog # (Select a product)
Density gradient medium for the isolation of mononuclear cells
From: 82 USD


Lymphoprep™ is a density gradient medium recommended for the isolation of mononuclear cells from peripheral blood, cord blood, and bone marrow by exploiting differences in cell density. Granulocytes and erythrocytes have a higher density than mononuclear cells and therefore sediment through the Lymphoprep™ layer during centrifugation. Lymphoprep™ can be substituted for Ficoll-Paque™ without any need to change your existing protocols and is fully compatible with both SepMate™ and RosetteSep™ .

Lymphoprep™ has a density of 1.077 g/mL.
• Sodium diatrizoate (9.1% w/v)
• Polysaccharide (5.7% w/v)
• Other ingredients
Density Gradient Media
Cell Type:
Mononuclear Cells
Sample Source:
Bone Marrow; Cord Blood; Whole Blood
Selection Method:
Cell Isolation
Area of Interest:

Scientific Resources

Product Documentation

Document Type
Product Name
Catalog #
Lot #

Educational Materials


Data and Publications


Figure 1. Purity and Recovery of Cells from Whole Blood When Using Cost-Effective Lymphoprep™ is Comparable to Using Ficoll-Paque™ PLUS

(A) Density gradient centrifugation of peripheral whole blood using Lymphoprep™ results in similar cell purity of mononuclear cells including T cells, B cells, NK cells and monocytes compared to Ficoll-Paque™ PLUS. (B) The recovery of total mononuclear cells and CD45+ cells is also similar. (n = 5, Mean ± SD).

Figure 2. Purity and Recovery of Cells from Cord Blood When Using Cost-Effective Lymphoprep™ is Comparable to Using Ficoll-Paque™ PLUS

(A) Density Gradient centrifugation of cord blood using Lymphoprep™ results in similar cell purity of mononuclear cells including T cells, B cells, NK cells and monocytes compared to Ficoll-Paque™ PLUS. (B) The recovery of total mononuclear cells and CD45+ cells is also similar. (n = 4, Mean ± SD).


Leukemia 2018 MAR

The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.

T. Girardi et al.


Several somatic ribosome defects have recently been discovered in cancer, yet their oncogenic mechanisms remain poorly understood. Here we investigated the pathogenic role of the recurrent R98S mutation in ribosomal protein L10 (RPL10 R98S) found in T-cell acute lymphoblastic leukemia (T-ALL). The JAK-STAT signaling pathway is a critical controller of cellular proliferation and survival. A proteome screen revealed overexpression of several Jak-Stat signaling proteins in engineered RPL10 R98S mouse lymphoid cells, which we confirmed in hematopoietic cells from transgenic Rpl10 R98S mice and T-ALL xenograft samples. RPL10 R98S expressing cells displayed JAK-STAT pathway hyper-activation upon cytokine stimulation, as well as increased sensitivity to clinically used JAK-STAT inhibitors like pimozide. A mutually exclusive mutation pattern between RPL10 R98S and JAK-STAT mutations in T-ALL patients further suggests that RPL10 R98S functionally mimics JAK-STAT activation. Mechanistically, besides transcriptional changes, RPL10 R98S caused reduction of apparent programmed ribosomal frameshifting at several ribosomal frameshift signals in mouse and human Jak-Stat genes, as well as decreased Jak1 degradation. Of further medical interest, RPL10 R98S cells showed reduced proteasome activity and enhanced sensitivity to clinical proteasome inhibitors. Collectively, we describe modulation of the JAK-STAT cascade as a novel cancer-promoting activity of a ribosomal mutation, and expand the relevance of this cascade in leukemia.
The Journal of clinical investigation 2018 JUN

Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.

J. Wagner et al.


ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.
Frontiers in immunology 2018

Phenotypic and Transcriptomic Analysis of Peripheral Blood Plasmacytoid and Conventional Dendritic Cells in Early Drug Na\ive Rheumatoid Arthritis."

F. A. H. Cooles et al.


Objective Dendritic cells (DCs) are key orchestrators of immune function. To date, rheumatoid arthritis (RA) researchers have predominantly focused on a potential pathogenic role for CD1c+ DCs. In contrast, CD141+ DCs and plasmacytoid DCs (pDCs) have not been systematically examined, at least in early RA. In established RA, the role of pDCs is ambiguous and, since disease duration and treatment both impact RA pathophysiology, we examined pDCs, and CD1c+ and CD141+ conventional DCs (cDCs), in early, drug-na{\{i}}ve RA (eRA) patients. Methods We analyzed the frequency and phenotype of pDCs
Frontiers in immunology 2018

Dysregulated CD25 and Cytokine Expression by gamma$delta$ T Cells of Systemic Sclerosis Patients Stimulated With Cardiolipin and Zoledronate.

H. Migalovich Sheikhet et al.


Objectives gamma$delta$ T cells, a non-conventional innate lymphocyte subset containing cells that can be activated by lipids and phosphoantigens, are abnormally regulated in systemic sclerosis (SSc). To further evaluate the significance of this dysregulation, we compared how exposure to an autoantigenic lipid, cardiolipin (CL), during co-stimulation with an amino-bisphosphonate (zoledronate, zol), affects the activation and cytokine production of SSc and healthy control (HC) gamma$delta$ T cells. Methods Expression of CD25 on Vgamma$9+, Vdelta$1+, and total CD3+ T cells in cultured peripheral blood mononuclear cells (PBMCs), their binding of CD1d tetramers, and the effect of monoclonal antibody (mAb) blockade of CD1d were monitored by flow cytometry after 4 days of in vitro culture. Intracellular production of IFNgamma$ and IL-4 was assessed after overnight culture. Results Percentages of CD25+ among CD3+ and Vdelta$1+ T cells were elevated significantly in short-term cultured SSc PBMC compared to HC. In SSc but not HC, CL and zol, respectively, suppressed {\%}CD25+ Vgamma$9+ and Vdelta$1+ T cells but, when combined, CL + zol significantly activated both subsets in HC and partially reversed inhibition by the individual reagents in SSc. Importantly, Vdelta$1+ T cells in both SSc and HC were highly reactive with lipid presenting CD1d tetramers, and a CD1d-blocking mAb decreased CL-induced enhancement of {\%}SSc CD25+ Vdelta$1+ T cells in the presence of zol. {\%}IFNgamma$+ cells among Vgamma$9+ T cells of SSc was lower than HC cultured in medium, CL, zol, or CL + zol, whereas {\%}IFNgamma$+ Vdelta$1+ T cells was lower only in the presence of CL or CL + zol. {\%}IL-4+ T cells were similar in SSc and HC in all conditions, with the exception of being increased in SSc Vgamma$9+ T cells in the presence of CL. Conclusion Abnormal functional responses of gamma$delta$ T cell subsets to stimulation by CL and phosphoantigens in SSc may contribute to fibrosis and immunosuppression, characteristics of this disease.
Frontiers in immunology 2018

Comparison of Phenotypic and Functional Characteristics Between Canine Non-B, Non-T Natural Killer Lymphocytes and CD3+CD5dimCD21- Cytotoxic Large Granular Lymphocytes.

S.-H. Lee et al.


Natural killer (NK) cells play a pivotal role in the immune response against infections and malignant transformation, and adopted transfer of NK cells is thought to be a promising therapeutic approach for cancer patients. Previous reports describing the phenotypic features of canine NK cells have produced inconsistent results. Canine NK cells are still defined as non-B and non-T (CD3-CD21-) large granular lymphocytes. However, a few reports have demonstrated that canine NK cells share the phenotypic characteristics of T lymphocytes, and that CD3+CD5dimCD21- lymphocytes are putative canine NK cells. Based on our previous reports, we hypothesized that phenotypic modulation could occur between these two populations during activation. In this study, we investigated the phenotypic and functional differences between CD3+CD5dimCD21- (cytotoxic large granular lymphocytes) and CD3-CD5-CD21- NK lymphocytes before and after culture of peripheral blood mononuclear cells isolated from normal dogs. The results of this study show that CD3+CD5dimCD21- lymphocytes can be differentiated into non-B, non-T NK (CD3-CD5-CD21-TCRalpha$beta$-TCRgamma$delta$-GranzymeB+) lymphocytes through phenotypic modulation in response to cytokine stimulation. In vitro studies of purified CD3+CD5dimCD21- cells showed that CD3-CD5-CD21- cells are derived from CD3+CD5dimCD21- cells through phenotypic modulation. CD3+CD5dimCD21- cells share more NK cell functional characteristics compared with CD3-CD5-CD21- cells, including the expression of T-box transcription factors (Eomes, T-bet), the production of granzyme B and interferon-gamma$, and the expression of NK cell-related molecular receptors such as NKG2D and NKp30. In conclusion, the results of this study suggest that CD3+CD5dimCD21- and CD3-CD5-CD21- cells both contain a subset of putative NK cells, and the difference between the two populations may be due to the degree of maturation.