SepMate™-50 (IVD)

Tube for density gradient centrifugation for in vitro diagnostic (IVD) applications

More Views

From: 459 USD

Options

* Required Fields

Catalog # (Select a product)
Tube for density gradient centrifugation for in vitro diagnostic (IVD) applications
From: 459 USD

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

Required Products

Overview

SepMate™ is now manufactured under cGMP and registered as an In Vitro Diagnostic (IVD) device in Australia, Canada, Europe and USA only. In China SepMate™ is considered a non-medical device by the China Food and Drug Administration (CFDA), and should therefore be used as general laboratory equipment. The end user is responsible for determining whether the product is suitable for their specific application. Due to these changes, users in Australia, Canada, Europe, USA and China should, from now on, order SepMate™-15 (IVD) (Catalog #85415 and #85420) and SepMate™-50 (IVD) (Catalog #85450 and #85460). Users in all other countries please refer to SepMate™-15 (RUO) (Catalog #86415) and SepMate™-50 (RUO) (Catalog #86450). Changes to SepMate™ have no impact on the product composition, performance or protocol.

SepMate™ is a tube that facilitates the isolation of PBMCs or specific cell types by density gradient centrifugation. SepMate™ tubes contain an insert that provides a barrier between the density gradient medium and blood. SepMate™ eliminates the need for careful layering of blood onto the density gradient medium, and allows for fast and easy harvesting of the isolated mononuclear cells with a simple pour. SepMate™ is also compatible with RosetteSep™ enrichment cocktails, allowing isolation of specific cell types in less than 30 minutes.
Advantages:
• Eliminates the need for carefully layering blood over the density gradient medium (e.g. Lymphoprep™, etc.)
• Reduces total centrifuge time to 10 minutes with the brake on for fresh samples
• Allows fast and easy harvesting of the isolated mononuclear cells by simply pouring off the supernatant
• Can be combined with RosetteSep™ enrichment cocktails to isolate specific cell types in just 30 minutes
Components:
  • SepMate™-50 (IVD), 100 Tubes (Catalog #85450)
    • Dispenser box containing 4 bags, 25 Tubes/Bag
  • SepMate™-50 (IVD), 500 Tubes (Catalog #85460)
    • Dispenser box containing 4 bags, 25 Tubes/Bag (Catalog #85450) x 5
Contains:
Polypropylene tube containing an insert
Subtype:
Centrifugation Tubes
Cell Type:
B Cells; Dendritic Cells; Monocytes; Mononuclear Cells; NK Cells; T Cells; T Cells, CD4+; T Cells, CD8+; T Cells, Other Subsets; T Cells, Regulatory
Species:
Human
Sample Source:
Bone Marrow; Cord Blood; Whole Blood
Selection Method:
Negative
Application:
Cell Isolation; In Vitro Diagnostic
Brand:
SepMate
Area of Interest:
Chimerism; HLA; Immunology

Scientific Resources

Product Documentation

Data and Publications

Data

PBMC recovery from fresh whole blood using SepMate™-50 versus standard density gradient centrifugation. Graph also shows PBMC recovery from a 48 hour-old sample using SepMate™. n in each group = 7

Figure 1. Recovery of mononuclear cells (MNCs) from peripheral blood using SepMate™-50 versus standard density gradient centrifiguation. Recovery of MNCs from fresh and 48-hour post blood draw enriched by density gradient centrifugation with SepMate™ (purple) or without (grey). There was no significant difference in the recovery of MNCS with and without SepMate™.

PBMC recovery from fresh whole blood using SepMate™-50 versus standard density gradient centrifugation. Graph also shows PBMC recovery from a 48 hour-old sample using SepMate™. n in each group = 7

Figure 2. Human CD4+ T Cell Isolation using SepMate™-50 and RosetteSep™ Human CD4+ T Cell Enrichment Cocktail

Publications

(32)
Stem cells (Dayton, Ohio) 2019 nov

PDGFR$\alpha$ marks distinct perivascular populations with different osteogenic potential within adipose tissue.

Y. Wang et al.

Abstract

The perivascular niche within adipose tissue is known to house multipotent cells, including osteoblast precursors. However, the identity of perivascular subpopulations that may mineralize or ossify most readily is not known. Here, we utilize inducible PDGFR$\alpha$ (platelet-derived growth factor alpha) reporter animals to identify subpopulations of perivascular progenitor cells. Results showed that PDGFR$\alpha$-expressing cells are present in four histologic niches within inguinal fat, including two perivascular locations. PDGFR$\alpha$+ cells are most frequent within the tunica adventitia of arteries and veins, where PDGFR$\alpha$+ cells populate the inner aspects of the adventitial layer. Although both PDGFR$\alpha$+ and PDGFR$\alpha$- fractions are multipotent progenitor cells, adipose tissue-derived PDGFR$\alpha$+ stromal cells proliferate faster and mineralize to a greater degree than their PDGFR$\alpha$- counterparts. Likewise, PDGFR$\alpha$+ ectopic implants reconstitute the perivascular niche and ossify to a greater degree than PDGFR$\alpha$- cell fractions. Adventicytes can be further grouped into three distinct groups based on expression of PDGFR$\alpha$ and/or CD34. When further partitioned, adventicytes co-expressing PDGFR$\alpha$ and CD34 represented a cell fraction with the highest mineralization potential. Long-term tracing studies showed that PDGFR$\alpha$-expressing adventicytes give rise to adipocytes, but not to other cells within the vessel wall under homeostatic conditions. However, upon bone morphogenetic protein 2 (BMP2)-induced ossicle formation, descendants of PDGFR$\alpha$+ cells gave rise to osteoblasts, adipocytes, and pericyte-like" cells within the ossicle. In sum PDGFR$\alpha$ marks distinct perivascular osteoprogenitor cell subpopulations within adipose tissue. The identification of perivascular osteoprogenitors may contribute to our improved understanding of pathologic mineralization/ossification. Stem Cells 2019."
JCI insight 2019 nov

Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice.

Y. Wang et al.

Abstract

Mammalian focal adhesion proteins Pinch1 and Pinch2 regulate integrin activation and cell-extracellular matrix adhesion and migration. Here, we show that deleting Pinch1 in osteocytes and mature osteoblasts using the 10-kb mouse Dmp1-Cre and Pinch2 globally (double KO; dKO) results in severe osteopenia throughout life, while ablating either gene does not cause bone loss, suggesting a functional redundancy of both factors in bone. Pinch deletion in osteocytes and mature osteoblasts generates signals that inhibit osteoblast and bone formation. Pinch-deficient osteocytes and conditioned media from dKO bone slice cultures contain abundant sclerostin protein and potently suppress osteoblast differentiation in primary BM stromal cells (BMSC) and calvarial cultures. Pinch deletion increases adiposity in the BM cavity. Primary dKO BMSC cultures display decreased osteoblastic but enhanced adipogenic, differentiation capacity. Pinch loss decreases expression of integrin $\beta$3, integrin-linked kinase (ILK), and $\alpha$-parvin and increases that of active caspase-3 and -8 in osteocytes. Pinch loss increases osteocyte apoptosis in vitro and in bone. Pinch loss upregulates expression of both Rankl and Opg in the cortical bone and does not increase osteoclast formation and bone resorption. Finally, Pinch ablation exacerbates hindlimb unloading-induced bone loss and impairs active ulna loading-stimulated bone formation. Thus, we establish a critical role of Pinch in control of bone homeostasis.
European journal of pharmacology 2019 nov

Decitabine promotes apoptosis in mesenchymal stromal cells isolated from patients with myelodysplastic syndromes by inducing reactive oxygen species generation.

L. Wang et al.

Abstract

Myelodysplastic syndromes (MDSs) are a group of clonal disorders of hematopoietic stem cells, resulting in ineffective hematopoiesis. Previous studies have reported that decitabine (DAC) plays an essential role in cell cycle arrest and cell death induction in multiple cell types. Nevertheless, the effect of decitabine on mesenchymal stromal cells derived from bone marrow of patients with MDSs is not completely clarified. Here, we explored the apoptotic and anti-proliferative effect of DAC on MSCs isolated from patients with MDSs. Treatment with DAC inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. We found a positive relationship between cell death triggered by DAC in MSCs and the death receptor family members Fas and FasL mRNA and protein levels (***P {\textless} 0.00085), cleaved caspase (-3, -8, and -9) activity, and mitochondrial membrane potential reduction. Additionally, DAC-induced apoptosis was inhibited by Kp7-6, a FasL/Fas antagonist, indicating a crucial role of FasL/Fas, a cell death receptor, in mediating the apoptotic effect of DAC. DAC also induced reactive oxygen species (ROS) generation in MSCs derived from MDSs patients (*P = 0.038). Furthermore, N-acetyl-L-cysteine (NAC), a widely accepted ROS scavenger, efficiently reversed DAC-induced apoptosis by inhibiting ROS generation (***P {\textless} 0.00051) in mitochondria and restoring mitochondrial membrane potential. Furthermore, ROS production was found to be a consequence of caspase activation via caspases inhibition. Our data imply that DAC triggers ROS production in human MSCs, which serves as a crucial factor for mitochondrial membrane potential reduction, and DAC induces cell death prior to FasL/Fas stimulation.
European journal of human genetics : EJHG 2019 may

Biallelic variants in POLR3GL cause endosteal hyperostosis and oligodontia.

P. A. Terhal et al.

Abstract

RNA polymerase III (Pol III) is an essential 17-subunit complex responsible for the transcription of small housekeeping RNAs such as transfer RNAs and 5S ribosomal RNA. Biallelic variants in four genes (POLR3A, POLR3B, and POLR1C and POLR3K) encoding Pol III subunits have previously been found in individuals with (neuro-) developmental disorders. In this report, we describe three individuals with biallelic variants in POLR3GL, a gene encoding a Pol III subunit that has not been associated with disease before. Using whole exome sequencing in a monozygotic twin and an unrelated individual, we detected homozygous and compound heterozygous POLR3GL splice acceptor site variants. RNA sequencing confirmed the loss of full-length POLR3GL RNA transcripts in blood samples of the individuals. The phenotypes of the described individuals are mainly characterized by axial endosteal hyperostosis, oligodontia, short stature, and mild facial dysmorphisms. These features largely fit within the spectrum of phenotypes caused by previously described biallelic variants in POLR3A, POLR3B, POLR1C, and POLR3K. These findings further expand the spectrum of POLR3-related disorders and implicate that POLR3GL should be included in genetic testing if such disorders are suspected.
JCI insight 2019 may

Self-tolerance curtails the B cell repertoire to microbial epitopes.

A. Watanabe et al.

Abstract

Immunological tolerance removes or inactivates self-reactive B cells, including those that also recognize cross-reactive foreign antigens. Whereas a few microbial pathogens exploit these holes" in the B cell repertoire by mimicking host antigens to evade immune surveillance the extent to which tolerance reduces the B cell repertoire to foreign antigens is unknown. Here we use single-cell cultures to determine the repertoires of human B cell antigen receptors (BCRs) before (transitional B cells) and after (mature B cells) the second B cell tolerance checkpoint in both healthy donors and in patients with systemic lupus erythematosus (SLE) . In healthy donors the majority ({\~{}}70{\%}) of transitional B cells that recognize foreign antigens also bind human self-antigens (foreign+self) and peripheral tolerance halves the frequency of foreign+self-reactive mature B cells. In contrast in SLE patients who are defective in the second tolerance checkpoint frequencies of foreign+self-reactive B cells remain unchanged during maturation of transitional to mature B cells. Patterns of foreign+self-reactivity among mature B cells from healthy donors differ from those of SLE patients. We propose that immune tolerance significantly reduces the scope of the BCR repertoire to microbial pathogens and that cross-reactivity between foreign and self epitopes may be more common than previously appreciated."
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.