Gentle Cell Dissociation Reagent

Enzyme-free cell dissociation reagent

More Views

Gentle Cell Dissociation Reagent

Enzyme-free cell dissociation reagent

100 mL
Catalog #07174
44 USD


Gentle Cell Dissociation Reagent (GCDR) is an enzyme-free reagent suitable for the dissociation of human embryonic stem (ES) cells or human induced pluripotent stem (iPS) cells into cell aggregates for routine passaging or into a single-cell suspension.
GCDR is also suitable for the isolation of intestinal crypts to establish intestinal organoids, and for breaking up Corning® Matrigel® domes when passaging organoid cultures. GCDR does not contain enzymes or other proteins.

GCDR is available individually or in a kit (Catalog #07190) with Vitronectin XF™, CellAdhere™ Dilution Buffer, and Non Tissue Culture-Treated 6-Well Plates.
• Enzyme-free and chemically defined

• Gentle on cells

• High expansion of human ES/iPS cells during routine culture
• Simple, room temperature passaging protocols
Cell Type:
Endoderm, PSC-Derived; Intestinal Cells; Pluripotent Stem Cells
Human; Mouse
Area of Interest:
Epithelial Cell Biology; Stem Cell Biology

Scientific Resources

Educational Materials


Data and Publications


Stem cell reports 2020 feb

iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests.

M. Themeli et al.


RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7-CD5- to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7-CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks.
Biosensors 2019 apr

A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues.

M. Robinson et al.


We have designed and validated a set of robust and non-toxic protocols for directly evaluating the properties of engineered neural tissue. These protocols characterize the mechanical properties of engineered neural tissues and measure their electrophysical activity. The protocols obtain elastic moduli of very soft fibrin hydrogel scaffolds and voltage readings from motor neuron cultures. Neurons require soft substrates to differentiate and mature, however measuring the elastic moduli of soft substrates remains difficult to accurately measure using standard protocols such as atomic force microscopy or shear rheology. Here we validate a direct method for acquiring elastic modulus of fibrin using a modified Hertz model for thin films. In this method, spherical indenters are positioned on top of the fibrin samples, generating an indentation depth that is then correlated with elastic modulus. Neurons function by transmitting electrical signals to one another and being able to assess the development of electrical signaling serves is an important verification step when engineering neural tissues. We then validated a protocol wherein the electrical activity of motor neural cultures is measured directly by a voltage sensitive dye and a microplate reader without causing damage to the cells. These protocols provide a non-destructive method for characterizing the mechanical and electrical properties of living spinal cord tissues using novel biosensing methods.
Stem cell reports 2018 JUL

Disruption of GRIN2B Impairs Differentiation in Human Neurons.

S. Bell et al.


Heterozygous loss-of-function mutations in GRIN2B, a subunit of the NMDA receptor, cause intellectual disability and language impairment. We developed clonal models of GRIN2B deletion and loss-of-function mutations in a region coding for the glutamate binding domain in human cells and generated neurons from a patient harboring a missense mutation in the same domain. Transcriptome analysis revealed extensive increases in genes associated with cell proliferation and decreases in genes associated with neuron differentiation, a result supported by extensive protein analyses. Using electrophysiology and calcium imaging, we demonstrate that NMDA receptors are present on neural progenitor cells and that human mutations in GRIN2B can impair calcium influx and membrane depolarization even in a presumed undifferentiated cell state, highlighting an important role for non-synaptic NMDA receptors. It may be this function, in part, which underlies the neurological disease observed in patients with GRIN2B mutations.
Cell metabolism 2016 SEP

$$-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells.

TeSlaa T et al.


Pluripotent stem cells (PSCs) can self-renew or differentiate from naive or more differentiated, primed, pluripotent states established by specific culture conditions. Increased intracellular $$-ketoglutarate ($$KG) was shown to favor self-renewal in naive mouse embryonic stem cells (mESCs). The effect of $$KG or $$KG/succinate levels on differentiation from primed human PSCs (hPSCs) or mouse epiblast stem cells (EpiSCs) remains unknown. We examined primed hPSCs and EpiSCs and show that increased $$KG or $$KG-to-succinate ratios accelerate, and elevated succinate levels delay, primed PSC differentiation. $$KG has been shown to inhibit the mitochondrial ATP synthase and to regulate epigenome-modifying dioxygenase enzymes. Mitochondrial uncoupling did not impede $$KG-accelerated primed PSC differentiation. Instead, $$KG induced, and succinate impaired, global histone and DNA demethylation in primed PSCs. The data support $$KG promotion of self-renewal or differentiation depending on the pluripotent state.
Nature Communications 2016 NOV

Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan

Noormohammadi A et al.


Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and, therefore, are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex, a chaperonin that facilitates the folding of 10% of the proteome. We find that ectopic expression of a single subunit (CCT8) is sufficient to increase TRiC/CCT assembly. Moreover, increased TRiC/CCT complex is required to avoid aggregation of mutant Huntingtin protein. We further show that increased expression of CCT8 in somatic tissues extends Caenorhabditis elegans lifespan in a TRiC/CCT-dependent manner. Ectopic expression of CCT8 also ameliorates the age-associated demise of proteostasis and corrects proteostatic deficiencies in worm models of Huntington's disease. Our results suggest proteostasis is a common principle that links organismal longevity with hESC immortality.