Chat with an Expert

SepMate™-50 (IVD)

Tube for density gradient centrifugation for in vitro diagnostic (IVD) applications

More Views

From: 446 USD


* Required Fields

Catalog # (Select a product)
Tube for density gradient centrifugation for in vitro diagnostic (IVD) applications
From: 446 USD

Required Products


SepMate™ is now manufactured under cGMP and registered as an In Vitro Diagnostic (IVD) device in Australia, Canada, Europe and USA only. In China SepMate™ is considered a non-medical device by the China Food and Drug Administration (CFDA), and should therefore be used as general laboratory equipment. The end user is responsible for determining whether the product is suitable for their specific application. Due to these changes, users in Australia, Canada, Europe, USA and China should, from now on, order SepMate™-15 (IVD) (Catalog #85415 and #85420) and SepMate™-50 (IVD) (Catalog #85450 and #85460). Users in all other countries please refer to SepMate™-15 (RUO) (Catalog #86415) and SepMate™-50 (RUO) (Catalog #86450). Changes to SepMate™ have no impact on the product composition, performance or protocol.

SepMate™ is a tube that facilitates the isolation of PBMCs or specific cell types by density gradient centrifugation. SepMate™ tubes contain an insert that provides a barrier between the density gradient medium and blood. SepMate™ eliminates the need for careful layering of blood onto the density gradient medium, and allows for fast and easy harvesting of the isolated mononuclear cells with a simple pour. SepMate™ is also compatible with RosetteSep™ enrichment cocktails, allowing isolation of specific cell types in less than 30 minutes.
• Eliminates the need for carefully layering blood over the density gradient medium (e.g. Lymphoprep™, etc.)
• Reduces total centrifuge time to 10 minutes with the brake on for fresh samples
• Allows fast and easy harvesting of the isolated mononuclear cells by simply pouring off the supernatant
• Can be combined with RosetteSep™ enrichment cocktails to isolate specific cell types in just 30 minutes
  • SepMate™-50 (IVD), 100 Tubes (Catalog #85450)
    • Dispenser box containing 4 bags, 25 Tubes/Bag
  • SepMate™-50 (IVD), 500 Tubes (Catalog #85460)
    • Dispenser box containing 4 bags, 25 Tubes/Bag (Catalog #85450) x 5
Polypropylene tube containing an insert
Centrifugation Tubes
Cell Type:
B Cells; Dendritic Cells; Monocytes; Mononuclear Cells; NK Cells; T Cells; T Cells, CD4+; T Cells, CD8+; T Cells, Other Subsets; T Cells, Regulatory
Sample Source:
Bone Marrow; Cord Blood; Whole Blood
Selection Method:
Cell Isolation; In Vitro Diagnostic
Area of Interest:
Chimerism; HLA; Immunology

Scientific Resources

Product Documentation

Document Type
Product Name
Catalog #
Lot #

Data and Publications


PBMC recovery from fresh whole blood using SepMate™-50 versus standard density gradient centrifugation. Graph also shows PBMC recovery from a 48 hour-old sample using SepMate™. n in each group = 7

Figure 1. Recovery of mononuclear cells (MNCs) from peripheral blood using SepMate™-50 versus standard density gradient centrifiguation. Recovery of MNCs from fresh and 48-hour post blood draw enriched by density gradient centrifugation with SepMate™ (purple) or without (grey). There was no significant difference in the recovery of MNCS with and without SepMate™.

PBMC recovery from fresh whole blood using SepMate™-50 versus standard density gradient centrifugation. Graph also shows PBMC recovery from a 48 hour-old sample using SepMate™. n in each group = 7

Figure 2. Human CD4+ T Cell Isolation using SepMate™-50 and RosetteSep™ Human CD4+ T Cell Enrichment Cocktail


Scientific Reports 2018 SEP

IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection.

C. Petes et al.


Cytokine responses from monocytes and macrophages exposed to bacteria are of particular importance in innate immunity. Focusing on the impact of the immunoregulatory cytokine interleukin (IL)-27 on control of innate immune system responses, we examined human immune responses to bacterial products and bacterial infection by E. coli and S. typhimurium. Since the effect of IL-27 treatment in human myeloid cells infected with bacteria is understudied, we treated human monocytes and macrophages with IL-27 and either LPS, flagellin, or bacteria, to investigate the effect on inflammatory signaling and cytokine responses. We determined that simultaneous stimulation with IL-27 and LPS derived from E. coli or S. typhimurium resulted in enhanced IL-12p40, TNF-$\alpha$, and IL-6 expression compared to that by LPS alone. To elucidate if IL-27 manipulated the cellular response to infection with bacteria, we infected IL-27 treated human macrophages with S. typhimurium. While IL-27 did not affect susceptibility to S. typhimurium infection or S. typhimurium-induced cell death, IL-27 significantly enhanced proinflammatory cytokine production in infected cells. Taken together, we highlight a role for IL-27 in modulating innate immune responses to bacterial infection.
Nature medicine 2018 OCT

Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma.

M. Cerezo et al.


Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5' cap of mRNAs, regulates the surface expression of interferon-$\gamma$-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.
Genes {\&} Immunity 2018 MAY

Mutations in RNA Polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection

M. E. Carter-Timofte et al.


Recently, deficiency in the cytosolic DNA sensor RNA Polymerase III was described in children with severe primary varicella-zoster virus (VZV) infection in the CNS and lungs. In the present study we examined adult patients with VZV CNS infection caused by viral reactivation. By whole exome sequencing we identified mutations in POL III genes in two of eight patients. These mutations were located in the coding regions of the subunits POLR3A and POLR3E. In functional assays, we found impaired expression of antiviral and inflammatory cytokines in response to the POL III agonist Poly(dA:dT) as well as increased viral replication in patient cells compared to controls. Altogether, this study provides significant extension on the current knowledge on susceptibility to VZV infection by demonstrating mutations in POL III genes associated with impaired immunological sensing of AT-rich DNA in adult patients with VZV CNS infection.
Frontiers in immunology 2018 JUN

Genetically Induced Tumors in the Oncopig Model Invoke an Antitumor Immune Response Dominated by Cytotoxic CD8 T Cells and Differentiated T Cells Alongside a Regulatory Response Mediated by FOXP3+ T Cells and Immunoregulatory Molecules

N. H. Overgaard et al.


In recent years, immunotherapy has shown considerable promise in the management of several malignancies. However, the majority of preclinical studies have been conducted in rodents, the results of which often translate poorly to patients given the substantial differences between murine and human immunology. As the porcine immune system is far more analogous to that of humans, pigs may serve as a supplementary preclinical model for future testing of such therapies. We have generated the genetically modified Oncopig with inducible tumor formation resulting from concomitant KRAS(G12D) and TP53(R167H) mutations under control of an adenoviral vector Cre-recombinase (AdCre). The objective of this study was to characterize the tumor microenvironment in this novel animal model with respect to T-cell responses in particular and to elucidate the potential use of Oncopigs for future preclinical testing of cancer immunotherapies. In this study, we observed pronounced intratumoral T-cell infiltration with a strong CD8$\beta$(+) predominance alongside a representation of highly differentiated $\gamma$$\delta$ T cells. The infiltrating CD8$\beta$(+) T cells displayed increased expression of the cytotoxic marker perforin when compared with the peripheral T-cell pool. Similarly, there was robust granzyme B staining localizing to the tumors; affirming the presence of cytotoxic immune cells within the tumor. In parallel with this antitumor immune response, the tumors displayed enrichment in FOXP3-expressing T cells and increased gene expression of indoleamine 2,3-dioxygenase 1 (IDO1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and programmed death-ligand 1 (PDL1). Finally, we investigated the Oncopig immune system in mediating antitumor immunity. We observed pronounced killing of autologous tumor cells, which demonstrates the propensity of the Oncopig immune system to recognize and mount a cytotoxic response against tumor cells. Together, these findings suggest innate and adaptive recognition of the induced tumors with a concomitant in vivo suppression of T-cell effector functions. Combined, the data support that the Oncopig may serve as a valuable model for future preclinical testing of immunotherapies aimed at reactivating tumor-directed cytotoxicity in vivo.
PLoS pathogens 2018 JUN

B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of rhesus macaques.

C. Yacoob et al.


Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutralizing antibodies. Env-based immunogens tested so far in various animal species and humans have elicited binding and autologous neutralizing antibodies but not bNAbs (with a few notable exceptions). The underlying reasons for this are not well understood despite intensive efforts to characterize the binding specificities of the elicited antibodies; mostly by employing serologic methodologies and monoclonal antibody isolation and characterization. These approaches provide limited information on the ontogenies and clonal B cell lineages that expand following Env-immunization. Thus, our current understanding on how the expansion of particular B cell lineages by Env may be linked to the development of non-neutralizing antibodies is limited. Here, in addition to serological analysis, we employed high-throughput BCR sequence analysis from the periphery, lymph nodes and bone marrow, as well as B cell- and antibody-isolation and characterization methods, to compare in great detail the B cell and antibody responses elicited in non-human primates by two forms of the clade C HIV Env 426c: one representing the full length extracellular portion of Env while the other lacking the variable domains 1, 2 and 3 and three conserved N-linked glycosylation sites. The two forms were equally immunogenic, but only the latter elicited neutralizing antibodies by stimulating a more restricted expansion of B cells to a narrower set of IGH/IGK/IGL-V genes that represented a small fraction (0.003-0.02{\%}) of total B cells. Our study provides new information on how Env antigenic differences drastically affect the expansion of particular B cell lineages and supports immunogen-design efforts aiming at stimulating the expansion of cells expressing particular B cell receptors.