IntestiCult™ Organoid Growth Medium (Human)

Cell culture medium for establishment and maintenance of human intestinal organoids

More Views

IntestiCult™ Organoid Growth Medium (Human)

Cell culture medium for establishment and maintenance of human intestinal organoids

1 Kit
Catalog #06010
485 USD

Required Products


IntestiCult™ Organoid Growth Medium (Human) is a complete cell culture medium for efficient establishment and long-term maintenance of intestinal organoids derived from human intestinal crypts. Intestinal organoids provide a convenient in vitro organotypic culture system for studying the intestinal epithelium. The organoids incorporate a functional lumen enclosed by a polarized intestinal epithelial cell layer. Isolated intestinal crypts rapidly form organoids when cultured in IntestiCult™ Organoid Growth Medium (Human). Applications of intestinal organoid cultures include studying the development and function of intestinal epithelium, modeling intestinal diseases, and screening molecules for both efficacy and toxicity in an intestinal model. Intestinal organoid cultures can also be used for investigation of adult stem cell properties and for regenerative therapy approaches.
• Convenient, in vitro system that recapitulates many key characteristics of the adult intestinal epithelium, including intra- and intercellular signaling, self-propagating stem cell niche, and functional transport into and out of the lumen
• Complete medium formulation that delivers consistent results
• Enables generation of intestinal organoids in one week
• Easy-to-use format and optimized protocol
  • IntestiCult OGM Human Component A, 50 mL
  • IntestiCult OGM Human Component B, 50 mL
Specialized Media
Cell Type:
Intestinal Cells
Cell Culture; Differentiation; Expansion; Maintenance; Organoid Culture
Area of Interest:
Disease Modeling; Drug Discovery and Toxicity Testing; Epithelial Cell Biology; Stem Cell Biology

Scientific Resources

Educational Materials

Brochure Organoids
Load More Educational Materials

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Figure 1. Primary Organoids Grown in IntestiCult™ Organoid Growth Medium (Human) are Fully Mature After 10-14 Days in Culture

Primary organoids were cultured from human colonic biopsy samples and grown in IntestiCult Organoid Growth Medium (Human). Organoids were imaged after (A) two days, (B) six days, (C) eight days and (D) ten days growth.

Figure 2. Organoids Grown in IntestiCult™ Organoid Growth Medium (Human) Display Markers of Human Intestinal Epithelial Cells

Immunofluorescence of organoids grown in IntestiCult™ Organoid Growth Medium (Human) showing colocalization of (A) DAPI, (B) EPCAM and (C) Ki67. (D) A merged image shows the position of actively proliferating (Ki67+) intestinal stem cells within the epithelial layer (EPCAM+).

Figure 3. Forskolin-Induced Swelling of Organoids Grown in IntestiCult™ Organoid Growth Medium (Human)

Organoids were treated with (A) 5 μM Forskolin or (B) DMSO and organoid area was measured at 0 minutes and 120 minutes. (C)Forskolin-treated organoids increased in size 33.5 ± 3.8% compared to 7.5 ± 0.8% for DMSO-treated organoids.


The Journal of clinical investigation 2020 jan

Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury.

A. G. Masoud et al.


Sustained, indolent immune injury of the vasculature of a heart transplant limits long-term graft and recipient survival. This injury is mitigated by a poorly characterized, maladaptive repair response. Vascular endothelial cells respond to proangiogenic cues in the embryo by differentiation to specialized phenotypes, associated with expression of apelin. In the adult, the role of developmental proangiogenic cues in repair of the established vasculature is largely unknown. We found that human and minor histocompatibility-mismatched donor mouse heart allografts with alloimmune-mediated vasculopathy upregulated expression of apelin in arteries and myocardial microvessels. In vivo, loss of donor heart expression of apelin facilitated graft immune cell infiltration, blunted vascular repair, and worsened occlusive vasculopathy in mice. In vitro, an apelin receptor agonist analog elicited endothelial nitric oxide synthase activation to promote endothelial monolayer wound repair and reduce immune cell adhesion. Thus, apelin acted as an autocrine growth cue to sustain vascular repair and mitigate the effects of immune injury. Treatment with an apelin receptor agonist after vasculopathy was established markedly reduced progression of arterial occlusion in mice. Together, these initial data identify proangiogenic apelin as a key mediator of coronary vascular repair and a pharmacotherapeutic target for immune-mediated injury of the coronary vasculature.
Molecular nutrition food research 2019 nov

Human Milk Oligosaccharides Increase Mucin Expression in Experimental Necrotizing Enterocolitis.

R. Y. Wu et al.


SCOPE Necrotizing enterocolitis (NEC) is a leading cause of morbidity and death in preterm infants, occurring more often in formula-fed than breastfed infants. Studies in both rats and humans show that human milk oligosaccharides (HMOs) lower the incidence of NEC, but the mechanism underlying such protection is currently unclear. METHODS AND RESULTS By extracting HMOs from pooled human breastmilk, the impact of HMOs on the intestinal mucin levels in a murine model of NEC are investigated. To confirm the results, the findings are validated by exposing human intestinal epithelial cells and intestinal organoids to HMOs and evaluated for mucin expression. HMO-gavage to pups increases Muc2 levels and decreases intestinal permeability to macromolecular dextran. HMO-treated cells have increased Muc2 expression, decreased bacterial attachment and dextran permeability during challenge by enteric pathogens. To identify the mediators involved in HMO induction of mucins, it is demonstrated that HMOs directly induce the expression of chaperone proteins including protein disulfide isomerase (PDI). Suppression of PDI activity removes the protective effects of HMOs on barrier function in vitro as well as NEC protection in vivo. CONCLUSIONS Taken together, the results provide insights to the possible mechanisms by which HMOs protect the neonatal intestine through upregulation of mucins.
Scientific reports 2019 nov

Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-$\gamma$ Responses in a Monocyte-Dependent Manner.

M. Mata Forsberg et al.


Secreted factors derived from Lactobacillus are able to dampen pro-inflammatory cytokine responses. Still, the nature of these components and the underlying mechanisms remain elusive. Here, we aimed to identify the components and the mechanism involved in the Lactobacillus-mediated modulation of immune cell activation. PBMC were stimulated in the presence of the cell free supernatants (CFS) of cultured Lactobacillus rhamnosus GG and Lactobacillus reuteri DSM 17938, followed by evaluation of cytokine responses. We show that lactobacilli-CFS effectively dampen induced IFN-$\gamma$ and IL-17A responses from T- and NK cells in a monocyte dependent manner by a soluble factor. A proteomic array analysis highlighted Lactobacillus-induced IL-1 receptor antagonist (ra) as a potential candidate responsible for the IFN-$\gamma$ dampening activity. Indeed, addition of recombinant IL-1ra to stimulated PBMC resulted in reduced IFN-$\gamma$ production. Further characterization of the lactobacilli-CFS revealed the presence of extracellular membrane vesicles with a similar immune regulatory activity to that observed with the lactobacilli-CFS. In conclusion, we have shown that lactobacilli produce extracellular MVs, which are able to dampen pro-inflammatory cytokine responses in a monocyte-dependent manner.
Mucosal immunology 2019 jan

NOX1-derived ROS drive the expression of Lipocalin-2 in colonic epithelial cells in inflammatory conditions.

N. Makhezer et al.


Inflammatory bowel disease (IBD) is characterized by severe and recurrent inflammation of the gastrointestinal tract, associated with altered patterns of cytokine synthesis, excessive reactive oxygen species (ROS) production, and high levels of the innate immune protein, lipocalin-2 (LCN-2), in the mucosa. The major source of ROS in intestinal epithelial cells is the NADPH oxidase NOX1, which consists of the transmembrane proteins, NOX1 and p22PHOX, and the cytosolic proteins, NOXO1, NOXA1, and Rac1. Here, we investigated whether NOX1 activation and ROS production induced by key inflammatory cytokines in IBD causally affects LCN-2 production in colonic epithelial cells. We found that the combination of TNFalpha and IL-17 induced a dramatic upregulation of NOXO1 expression that was dependent on the activation of p38MAPK and JNK1/2, and resulted into an increase of NOX1 activity and ROS production. NOX1-derived ROS drive the expression of LCN-2 by controlling the expression of IkappaBzeta, a master inducer of LCN-2. Furthermore, LCN-2 production and colon damage were decreased in NOX1-deficient mice during TNBS-induced colitis. Finally, analyses of biopsies from patients with Crohn's disease showed increased JNK1/2 activation, and NOXO1 and LCN-2 expression. Therefore, NOX1 might play a key role in mucosal immunity and inflammation by controlling LCN-2 expression.
Scientific reports 2019 feb

Clostridium ramosum regulates enterochromaffin cell development and serotonin release.

A. D. Mandi\'c et al.


Peripheral serotonin (5-hydroxytryptamine: 5-HT) synthesized in the intestine by enterochromaffin cells (ECs), plays an important role in the regulation of peristaltic of the gut, epithelial secretion and promotes the development and maintenance of the enteric neurons. Recent studies showed that the indigenous gut microbiota modulates 5-HT signalling and that ECs use sensory receptors to detect dietary and microbiota-derived signals from the lumen to subsequently transduce the information to the nervous system. We hypothesized that Clostridium ramosum by increasing gut 5-HT availability consequently contributes to high-fat diet-induced obesity. Using germ-free mice and mice monoassociated with C. ramosum, intestinal cell lines and mouse organoids, we demonstrated that bacterial cell components stimulate host 5-HT secretion and program the differentiation of colonic intestinal stem progenitors toward the secretory 5-HT-producing lineage. An elevated 5-HT level regulates the expression of major proteins involved in intestinal fatty acid absorption in vitro, suggesting that the presence of C. ramosum in the gut promotes 5-HT secretion and thereby could facilitates intestinal lipid absorption and the development of obesity.