STEMdiff™ Kidney Organoid Kit

Serum-free medium kit for the culture of kidney organoids from hPSCs

STEMdiff™ Kidney Organoid Kit

Serum-free medium kit for the culture of kidney organoids from hPSCs

STEMdiff™ Kidney Organoid Kit
1 Kit
274 USD
Catalog # 05160

Serum-free medium kit for the culture of kidney organoids from hPSCs

Product Advantages


  • RELEVANT. Enables generation of human kidney organoids that model the developing nephron and associated endothelium and mesenchyme.

  • SIMPLE. Minimizes culture manipulations with a two-stage culture system and easy-to-follow protocol.

  • RELIABLE. Provides low experimental variability through an optimized formulation and rigorous quality controls.

  • HIGH THROUGHPUT. Reproducibly generates organoids in 96- and 384-well formats.

What's Included

  • STEMdiff™ Kidney Basal Medium, 100 mL
  • STEMdiff™ Kidney Supplement SG (100X), 200 µL
  • STEMdiff™ Kidney Supplement DM (50X), 1.6 mL
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

What Our Scientist Says

We developed the STEMdiff™ Kidney Organoid Kit to enable researchers to easily generate kidney organoids with a typical nephron-like segmentation that are suitable for disease modeling, nephrotoxicity assessment, and other applications.

Philipp KramerSenior Scientist
Philipp Kramer, Senior Scientist

Overview

STEMdiff™ Kidney Organoid Kit is a complete, serum-free cell culture medium system that supports highly efficient and reproducible generation of human pluripotent stem cell (hPSC)-derived kidney organoids in a simple, two-stage differentiation protocol. These kidney organoids are composed of podocytes, proximal tubules, distal tubules, as well as the associated endothelium and mesenchyme.

Kidney organoids generated with STEMdiff™ Kidney Organoid Kit are tested for compatibility with phenotypic high-throughput assays such as nephrotoxic compound screening. They also provide a relevant and convenient model for studies related to developmental biology and disease modeling.

Contains
Serum-free medium kit for the culture of kidney orgaonids from hPSCs
Subtype
Specialized Media
Cell Type
Kidney Cells, Mesoderm, PSC-Derived
Species
Human
Application
Cell Culture, Differentiation, Functional Assay, Organoid Culture
Brand
STEMdiff
Area of Interest
Disease Modeling, Drug Discovery and Toxicity Testing, Epithelial Cell Biology, Organoids
Formulation
Serum-Free

Data Figures

Figure 1. Representative Images of Kidney Organoids

The STEMdiff™ Kidney Organoid Kit facilitates the directed differentiation of hPSCs to form kidney organoids that model the developing nephron. Pictured are human kidney organoids grown using the STEMdiff™ Kidney Organoid Kit differentiated from (A) iPS (WLS-1C) or (B) ES (H9) cells and imaged on day 12 and day 18 of differentiation, respectively.

Figure 2. Schematic for Differentiation from hPSCs to Human Kidney Organoids with the STEMdiff™ Kidney Organoid Kit

hPSC cultures progress through a simple two-stage process to generate kidney organoids. hPSCs are first plated and overlaid with Corning® Matrigel® to form cavitated spheroids. On the following day (Day 0), differentiation of cavitated PSC spheroids is initiated by changing medium from mTeSR™1 to STEMdiff™ Kidney Organoid Kit. During the next 18 days, the cells are directed through stages of the late primitive streak, intermediate mesoderm, and metanephric mesoderm to give rise to kidney organoids that are composed of podocytes, proximal and distal tubules, and an associated endothelium and mesenchyme.

Figure 3. Efficient Differentiation of Human Pluripotent Stem Cells into Self-Organizing Kidney Organoids

The STEMdiff™ Kidney Organoid Kit enables high-efficiency generation of kidney organoids from both ES (A, H1; B, H9) and iPS (C, WLS-1C; D, STiPS-M001) cell lines. (E) Kidney organoids were grown using the STEMdiff™ Kidney Organoid Kit or using home-made medium, and the average number of organoids per well of a 96-well plate was quantified on Day 18. All four tested cell lines were capable of differentiating into self-organizing kidney organoids that form convoluted tubular structures with high efficiency (mean ± SD, n ≥ 2).

Figure 4. Kidney Organoids Grown Using the STEMdiff™ Kidney Organoid Kit Show the Expected Changes in Gene Expression During Differentiation

As organoids progress through the stages of differentiation to more mature renal cell types, gene expression shifts from markers of pluripotency (day 0) to the mesoderm (day 1.5 - 4) and to the intermediate mesoderm/metanephric mesenchyme by day 4 - 12. Markers of the podocytes, proximal and distal tubules, mesenchyme and endothelium are observable starting by day 14. Marker levels were assessed in four independent experiments by RT-qPCR and normalized to expression levels of undifferentiated cells.

Figure 5. Kidney Organoids form Convoluted Tubular Structures with Typical Nephron-like Segmentation

(A) During differentiation, kidney organoids form convoluted tubular structures that resemble the structure and segmentation of the developing nephron. These organoids express markers of the (B) renal epithelium including podocalyxin (PODXL), lotus tetragonolobus lectin (LTL), and E-cadherin (ECAD), as well as markers of the (C) endothelium (platelet endothelial cell adhesion molecule, CD31), and (D) mesenchyme (vimentin, VIM; Meis homeobox family, MEIS1/2/3).

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
05160
Lot #
All
Language
English
Document Type
Technical Manual
Catalog #
05160
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Catalog #
05160
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Catalog #
05160
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Catalog #
05160
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Contact STEMCELL Technologies

Our Customer Service, Sales, and Product and Scientific Support departments in North America are available between 6 am and 5 pm Pacific Time (9 am and 8 pm Eastern Time). One of our representatives will be happy to help you by telephone or email. Please complete the form to contact us by email. A representative will get back to you shortly.
  •  

StemCell Technologies Inc. and affiliates ("STEMCELL Technologies") does not share your email address with third parties. StemCell Technologies Inc. will use your email address to confirm your identity and send you newsletters, transaction-related emails, promotional and customer service emails in accordance with our privacy policy. You can change your email preferences at any time.