BrainPhys™ Neuronal Medium

Serum-free neurophysiological basal medium for improved neuronal function

BrainPhys™ Neuronal Medium

Serum-free neurophysiological basal medium for improved neuronal function

500 mL
Catalog #05790
83 USD

BrainPhys™ Neuronal Medium and SM1 Kit

Kit including BrainPhys™ Neuronal Medium and SM1 Neuronal Supplement for culture of primary and ES/iPS cell-derived neurons

500 mL Kit
Catalog #05792
161 USD

BrainPhys™ Neuronal Medium N2-A & SM1 Kit

Kit including BrainPhys™ Neuronal Medium, SM1 Neuronal Supplement, and N2 Supplement-A for culture of ES/iPS cell-derived neurons

500 mL Kit
Catalog #05793
239 USD

.

Overview

BrainPhys™ Neuronal Medium is a defined and serum-free neuronal basal medium. BrainPhys™ may be used to culture primary neurons or neurons derived from human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. Based on the formulation published by Cedric Bardy and Fred H. Gage (C Bardy et al. Proc Natl Acad Sci USA, 2015), BrainPhys™ is more representative of the central nervous system extracellular environment and increases the proportion of synaptically active neurons. Applications of BrainPhys™ Neuronal Medium include culture of primary neurons, differentiation and maturation of human ES/iPS cell-derived neurons, microelectrode array-based recording of neuronal activity, live in vitro fluorescent imaging (including calcium imaging and optogenetic stimulation and recording) and transdifferentiation (lineage conversion) of somatic cells to neurons.

To ensure cell survival in long-term serum-free culture, BrainPhys™ must be combined with an appropriate serum-replacement supplement, such as NeuroCult™ SM1 Neuronal Supplement (Catalog #05711) and/or N2 Supplement-A (Catalog #07152) . The BrainPhys™ Neuronal Medium and SM1 Kit (Catalog #05792) is recommended for primary neuronal culture. The BrainPhys™ Neuronal Medium N2-A/SM1 Kit (Catalog #05793) is recommended for the differentiation and maturation of ES/iPS cell-derived neurons, in combination with lineage-specific growth factors and/or small molecules.
Advantages:
• More representative of the brain’s extracellular environment
• Improved neuronal function and a higher proportion of synaptically active neurons
• Perform functional assays without changing media and shocking cells
• Supports long-term culture of ES/iPS cell- and CNS-derived neurons
• Rigorous raw material screening and quality control ensure minimal lot-to-lot variability
Components:
  • BrainPhys™ Neuronal Medium and SM1 Kit (Catalog #05792)
    • BrainPhys™ Neuronal Medium, 500 mL (Catalog #05790)
    • NeuroCult™ SM1 Neuronal Supplement, 10 mL (Catalog #05711)
  • BrainPhys™ Neuronal Medium N2-A/SM1 Kit (Catalog #05793)
    • BrainPhys™ Neuronal Medium, 500 mL (Catalog #05790)
    • NeuroCult™ SM1 Neuronal Supplement, 10 mL (Catalog #05711)
    • N2 Supplement-A, 5 mL (Catalog #07152)
Subtype:
Basal Media; Specialized Media
Cell Type:
Neural Cells, PSC-Derived; Neurons; Pluripotent Stem Cells
Species:
Human; Mouse; Rat
Application:
Cell Culture; Differentiation; Maintenance
Brand:
BrainPhys
Area of Interest:
Disease Modeling; Drug Discovery and Toxicity Testing; Neuroscience; Stem Cell Biology
Formulation:
Serum-Free; Defined

Technical Resources

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Table 1. Properties of Culture Media (C Bardy et al. Proc Natl Acad Sci USA, 2015)

Check-mark denotes physiological conditions

Check-mark denotes physiological conditions and supported activities according to C Bardy et al. Proc Natl Acad Sci USA, 2015.

Rodent Neurons Matured in BrainPhys™ Neuronal Medium

Figure 1. Rodent Neurons Matured in BrainPhys™ Neuronal Medium are Healthy and Morphologically Mature

(A,C) Primary rat E18 cortical neurons were plated in NeuroCult™ Neuronal Basal Medium, supplemented with NeuroCult™ SM1 Neuronal Supplement. After 5 DIV, the cultures were transitioned to BrainPhys™ Neuronal Medium, supplemented with NeuroCult™ SM1, by performing half-medium changes every 3-4 days. Neurons were cultured for 14 (A) or 21 (C) DIV. (B,D) Primary rat E18 cortical neurons were plated and matured in a traditional neuronal medium (Neurobasal Medium), supplemented with NeuroCult™ SM1 Neuronal Supplement for 14 (B) or 21 (D) DIV. Neuronal morphology of BrainPhys™ Neuronal Medium-matured neurons is consistent with neurons plated and matured in a traditional neuronal medium.

Primary Neuronal Cultures Matured in BrainPhys™ Neuronal Medium Have Greater Numbers of Neurons

Figure 2. Primary Neuronal Cultures Matured in BrainPhys™ Neuronal Medium Have Greater Numbers of Neurons

Primary rat E18 cortical neurons were plated in either NeuroCult™ Neuronal Basal Medium (NCSM1) or Neurobasal Medium (NBSM1), supplemented with NeuroCult™ SM1. After 5 DIV, half of the cultures were transitioned to BrainPhys™ Neuronal Medium, supplemented with NeuroCult™ SM1, by performing half-medium changes every 3-4 days. The other half of the cultures were maintained in the same medium as used for plating. After 21 DIV, more neurons were evident in the cultures matured in BrainPhys™ Neuronal Medium, regardless of whether NeuroCult™ Neuronal Basal Medium or Neurobasal Medium was used as the plating medium. (n = 2, mean ± SEM [triplicate wells were set up for each experiment]).

Rodent Neuronal Cultures Matured in BrainPhys™ Neuronal Medium Show Improved Excitatory and Inhibitory Synaptic Activity

Figure 3. Rodent Neuronal Cultures Matured in BrainPhys™ Neuronal Medium Show Improved Excitatory and Inhibitory Synaptic Activity

(A,C) Primary rat E18 cortical neurons were plated in NeuroCult™ Neuronal Basal Medium, supplemented with NeuroCult™ SM1 Neuronal Supplement. After 5 DIV, the cultures were transitioned to BrainPhys™ Neuronal Medium, supplemented with NeuroCult™ SM1 Neuronal Supplement, by performing half-medium changes every 3 - 4 days. Neurons were cultured for 21 DIV. (B,D) Primary rat E18 cortical neurons were plated and matured in a traditional neuronal medium (Neurobasal Medium), supplemented with NeuroCult™ SM1 Neuronal Supplement for 21 DIV. (A,C) Neurons matured in BrainPhys™ Neuronal Medium showed spontaneous excitatory (AMPA-mediated; A) and inhibitory (GABA-mediated; C) synaptic events. The frequency and amplitude of spontaneous synaptic events is consistently greater in neuronal cultures matured in BrainPhys™ Neuronal Medium, compared to neurons plated and matured in a traditional neuronal medium (B,D). Traces are representative.

Expression of Pre-Synaptic Markers in Rodent Neurons Matured in BrainPhys™ Neuronal Medium

Figure 4. Expression of Pre-Synaptic Markers in Rodent Neurons Matured in BrainPhys™ Neuronal Medium

Primary rat E18 cortical neurons were plated in NeuroCult™ Neuronal Basal Medium, supplemented with NeuroCult™ SM1 Neuronal Supplement. After 5 DIV, the cultures were transitioned to BrainPhys™ Neuronal Medium, supplemented with NeuroCult™ SM1 Neuronal Supplement, by performing half-medium changes every 3 - 4 days. Neurons cultured for 21 DIV are phenotypically mature, as indicated by the presence of an extensive dendritic arbor. The pre-synaptic marker synapsin (A,B; green) is concentrated in discrete puncta distributed along the somata and dendritic processes, as defined by the dendritic marker MAP2 (A,C; red). Scale bar= 50 µm.

hPSC-Derived Neurons Generated in BrainPhys™ Neuronal Medium Express Markers of Neuronal Maturity After 14 and 44 Days of Differentiation

Figure 5. hPSC-Derived Neurons Generated in BrainPhys™ Neuronal Medium Express Markers of Neuronal Maturity After 14 and 44 Days of Differentiation

NPCs were generated from H9 cells using STEMdiff™ Neural Induction Medium in an embryoid body-based protocol. Next, NPCs were cultured in (A,C) BrainPhys™ Neuronal Medium, supplemented with 2% NeuroCult™ SM1 Supplement, 1% N2 Supplement-A, 20 ng/mL GDNF, 20 ng/mL BDNF, 1 mM db-cAMP and 200 nM ascorbic acid to initiate neuronal differentiation, or (B,D) DMEM/F12 under the same supplementation conditions. After 14 and 44 days of differentiation and maturation, neurons express the synaptic marker Synapsin 1 (green) and the mature neuronal marker MAP2 (red). In this example, neurons matured in BrainPhys™ Neuronal Medium show increased Synapsin 1 staining. Scale bar= 100 µm

hPSC-Derived Neurons Generated in BrainPhys™ Neuronal Medium and NeuroCult™ SM1 and N2 Supplements are Healthy and Morphologically Normal

Figure 6. hPSC-Derived Neurons Generated in BrainPhys™ Neuronal Medium and NeuroCult™ SM1 and N2 Supplements are Healthy and Morphologically Normal

NPCs were generated from H9 cells using STEMdiff™ Neural Induction Medium in an embryoid body-based protocol. Next, NPCs were cultured for 44 DIV in (A) BrainPhys™ Neuronal Medium, supplemented with 2% NeuroCult™ SM1 Supplement, 1% N2 Supplement-A, 20 ng/mL GDNF, 20 ng/mL BDNF, 1 mM db-cAMP and 200 nM ascorbic acid to initiate neuronal differentiation, or (B) DMEM/F12 under the same supplementation conditions. Neuronal cultures differentiated from NPCs in BrainPhys™ Neuronal Medium display extensive neurite outgrowth and reduced cellular debris compared to cultures differentiated in DMEM/F12. Scale bar= 100 µm.

hPSC-Derived Neurons Matured in BrainPhys™ Neuronal Medium Show Improved Excitatory and Inhibitory Synaptic Activity

Figure 7. hPSC-Derived Neurons Matured in BrainPhys™ Neuronal Medium Show Improved Excitatory and Inhibitory Synaptic Activity

NPCs were generated from H9 cells using STEMdiff™ Neural Induction Medium in an embryoid body-based protocol. Next, NPCs were cultured for 44 DIV in (A,C) BrainPhys™ Neuronal Medium, supplemented with 2% NeuroCult™ SM1 Supplement, 1% N2 Supplement-A, 20 ng/mL GDNF, 20 ng/mL BDNF, 1 mM db-cAMP and 200 nM ascorbic acid to initiate neuronal differentiation, or (B,D) in DMEM/F12 under the same supplementation conditions. (A,C) Neurons matured in BrainPhys™ Neuronal Medium showed spontaneous excitatory (AMPA-mediated; A) and inhibitory (GABA-mediated; C) synaptic events. The frequency and amplitude of spontaneous synaptic events is consistently greater in neuronal cultures matured in BrainPhys™ Neuronal Medium, compared to neurons plated and matured in DMEM/F12 (B,D). Traces are representative.

Publications

(1)
Nature neuroscience 2016 OCT

A viral strategy for targeting and manipulating interneurons across vertebrate species.

Dimidschstein J et al.

Abstract

A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.
STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.
Chat with an Expert