ImmunoCult™-XF T Cell Expansion Medium

Serum-free and xeno-free medium for the expansion of human T cells

More Views

ImmunoCult™-XF T Cell Expansion Medium, 500 mL

Serum-free and xeno-free medium for the expansion of human T cells

500 mL
Catalog #10981
161 USD

Overview

ImmunoCult™-XF T Cell Expansion Medium is a serum-free and xeno-free medium optimized for the in vitro culture and expansion of human T cells isolated from peripheral blood. Recombinant cytokines, required for the optimal growth and expansion of T cells, have not been added to ImmunoCult™-XF T Cell Expansion Medium. This allows users the flexibility to prepare medium that meets their requirements.

This product is designed for cell therapy research applications following the recommendations of USP<1043> on Ancillary Materials, and we can currently work with you to qualify this reagent under an approved investigational new drug (IND) or clinical trial application (CTA).
Advantages:
• No need to supplement the medium with serum
• Supports robust T cell expansion with high viability after 10 - 12 days of culture
• Expanded T cells are able to produce cytokines including IFN-gamma and IL-4 upon restimulation
• Use with ImmunoCult™ Human T Cell Activators (Catalog #10970 and 10971) for bead-free activation of T cells
Subtype:
Specialized Media
Cell Type:
T Cells; T Cells, CD4+; T Cells, CD8+
Species:
Human
Application:
Cell Culture; Expansion
Brand:
ImmunoCult
Area of Interest:
Cell Therapy; Immunology
Formulation:
Serum-Free; Xeno-Free

Scientific Resources

Educational Materials

(18)
Load More Educational Materials

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

ImmunoCult™-XF T Cell Expansion Medium Supports Faster T Cell Expansion Than Other Serum-Free and Serum-Supplemented Media

Figure 1. ImmunoCult™-XF T Cell Expansion Medium Supports Faster T Cell Expansion Than Other Serum-Free and Serum-Supplemented Media

T cells were isolated from human peripheral blood samples using the EasySep™ Human T Cell Isolation Kit (Catalog #17951), stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator (Catalog #10970), and cultured in ImmunoCult™-XF T Cell Expansion Medium supplemented with rhIL-2. T cells were stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator on day 0 and every 7 to 8 days for the duration of the culture. T cells were analyzed on days 4, 7, 8, 10, 11, 14, 18, and 21 for fold expansion relative to the initial cell seeding density. Compared to all competitor media tested, ImmunoCult™-XF T Cell Expansion Medium showed significantly higher expansion of total T cells. Competitors 1 to 4 include, in no particular order, X-VIVO™ 15 (Lonza), AIM V® Medium (Life Tech), CellGro® DC Medium (CellGenix), and RPMI 1640 + serum. Each data point represents the mean fold expansion ± S.E.M. at the specified time points (p<0.05 for ImmunoCult™-XF versus all media for days 8, 11, 14, 18, and 21, tested using two-tailed, paired t-test with unequal variance, n = 6 to 19 donors). The average fold expansion of T cells in ImmunoCult™-XF T Cell Expansion Medium were 15-fold on day 7, 80-fold on day 10, 450-fold on day 14, and 4,000-fold on day 21.

ImmunoCult™-XF T Cell Expansion Medium Supports Greater T Cell Expansion Than Other Serum-Free and Serum-Supplemented Media

Figure 2. ImmunoCult™-XF T Cell Expansion Medium Supports Greater T Cell Expansion Than Other Serum-Free and Serum-Supplemented Media

T cells were isolated from human peripheral blood samples using the EasySep™ Human T Cell Isolation Kit (Catalog #17951), stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator (Catalog #10970), and cultured in (A) ImmunoCult™-XF T Cell Expansion Medium or serum-free competitor media with rhIL-2 in three replicate cultures per donor, or cultured in (B) ImmunoCult™-XF T Cell Expansion Medium or serum-supplemented competitor media with rhIL-2 in three replicate cultures per donor. T cells were stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator on day 0 and every 7 to 8 days for the duration of the culture. T cells were analyzed on day 21 for fold expansion relative to the initial cell seeding density.
(A) Compared to all serum-free competitor media tested, ImmunoCult™-XF T Cell Expansion Medium showed significantly higher expansion of total T cells. Competitors 1 to 6 represent serum-free competitor media, which include, in no particular order, X-VIVO™ 15 (Lonza), AIM V® Medium (Life Tech), CellGro® DC Medium (CellGenix), CTS™ OpTmizer™ T Cell Expansion SFM (Life Tech), TexMACS™ Medium (Miltenyi), and PRIME-XV® T Cell Expansion XSFM (Irvine Scientific). Each column with error bars represents the mean ± S.E.M. (p<5x10-13 for ImmunoCult™-XF T Cell Expansion Medium versus all other serum-free media, tested using the linear mixed effect model with linear regression, n = 4 to 19 donors).
(B) Compared to all serum-supplemented competitor media tested, ImmunoCult™-XF T Cell Expansion Medium showed similar or significantly higher expansion of total T cells. Competitors 1 to 4 represent serum-supplemented competitor media, which include, in no particular order, X-VIVO™ 15 + serum, CTS™ OpTmizer™ T Cell Expansion SFM + serum, RPMI 1640 + serum, and IMDM + serum. Each column with error bars represents the mean ± S.E.M. (p<0.0006 for ImmunoCult™-XF T Cell Expansion Medium versus all other serum-supplemented media except for Competitor 4, tested using the linear mixed effect model with linear regression, n = 1 to 19 donors).

T Cells Expanded in ImmunoCult™-XF T Cell Expansion Medium Show Similar Proportions of CD4+ and CD8+ Cells as T Cells at the Start of Culture

Figure 3. T Cells Expanded in ImmunoCult™-XF T Cell Expansion Medium Show Similar Proportions of CD4+ and CD8+ Cells as T Cells at the Start of Culture

T cells were isolated from human peripheral blood samples using the EasySep™ Human T Cell Isolation Kit (Catalog #17951), stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator (Catalog #10970), and cultured in ImmunoCult™-XF T Cell Expansion Medium supplemented with rhIL-2. T cells were stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator on day 0 and every 7 to 8 days for the duration of the culture. On day 0 and day 21, T cells were harvested and analyzed for (A) CD4+ and (B) CD8+ expression. Each column with error bars represents the mean ± S.E.M. (n = 24 donors for day 0 and n = 19 donors for day 21).

T Cells Expanded in ImmunoCult™-XF T Cell Expansion Medium Produce Intracellular IFN-gamma and IL-4

Figure 4. T Cells Expanded in ImmunoCult™-XF T Cell Expansion Medium Produce Intracellular IFN-gamma and IL-4

T cells were isolated from human peripheral blood samples using the EasySep™ Human T Cell Isolation Kit (Catalog #17951), stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator (Catalog #10970), and cultured in ImmunoCult™-XF T Cell Expansion Medium supplemented with rhIL-2. T cells were stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator on day 0 and every 7 to 8 days for the duration of the culture. On day 21, T cells were harvested and analyzed for intracellular IFN-gamma and IL-4 after stimulation with PMA and ionomycin for 4 hours and with Brefeldin A for 2 hours. The production of IFN-gamma and IL-4 in CD3+, CD3+CD4+CD8-, and CD3+CD4-CD8+ cells were determined. Each stacked column with error bars represents the mean ± S.E.M. (n = 9 donors).

Publications

(5)
Clinical cancer research : an official journal of the American Association for Cancer Research 2020 apr

CUE-101, a Novel E7-pHLA-IL2-Fc Fusion Protein, Enhances Tumor Antigen-Specific T-Cell Activation for the Treatment of HPV16-Driven Malignancies.

S. N. Quayle et al.

Abstract

PURPOSE To assess the potential for CUE-101, a novel therapeutic fusion protein, to selectively activate and expand HPV16 E711-20-specific CD8+ T cells as an off-the shelf therapy for the treatment of HPV16-driven tumors, including head and neck squamous cell carcinoma (HNSCC), cervical, and anal cancers. EXPERIMENTAL DESIGN CUE-101 is an Fc fusion protein composed of a human leukocyte antigen (HLA) complex, an HPV16 E7 peptide epitope, reduced affinity human IL2 molecules, and an effector attenuated human IgG1 Fc domain. Human E7-specific T cells and human peripheral blood mononuclear cells (PBMC) were tested to demonstrate cellular activity and specificity of CUE-101, whereas in vivo activity of CUE-101 was assessed in HLA-A2 transgenic mice. Antitumor efficacy with a murine surrogate (mCUE-101) was tested in the TC-1 syngeneic tumor model. RESULTS CUE-101 demonstrates selective binding, activation, and expansion of HPV16 E711-20-specific CD8+ T cells from PBMCs relative to nontarget cells. Intravenous administration of CUE-101 induced selective expansion of HPV16 E711-20-specific CD8+ T cells in HLA-A2 (AAD) transgenic mice, and anticancer efficacy and immunologic memory was demonstrated in TC-1 tumor-bearing mice treated with mCUE-101. Combination therapy with anti-PD-1 checkpoint blockade further enhanced the observed efficacy. CONCLUSIONS Consistent with its design, CUE-101 demonstrates selective expansion of an HPV16 E711-20-specific population of cytotoxic CD8+ T cells, a favorable safety profile, and in vitro and in vivo evidence supporting its potential for clinical efficacy in an ongoing phase I trial (NCT03978689).
Nature communications 2019 dec

Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach.

J. Min et al.

Abstract

Dysplasia is considered a key transition state between pre-cancer and cancer in gastric carcinogenesis. However, the cellular or phenotypic heterogeneity and mechanisms of dysplasia progression have not been elucidated. We have established metaplastic and dysplastic organoid lines, derived from Mist1-Kras(G12D) mouse stomach corpus and studied distinct cellular behaviors and characteristics of metaplastic and dysplastic organoids. We also examined functional roles for Kras activation in dysplasia progression using Selumetinib, a MEK inhibitor, which is a downstream mediator of Kras signaling. Here, we report that dysplastic organoids die or show altered cellular behaviors and diminished aggressive behavior in response to MEK inhibition. However, the organoids surviving after MEK inhibition maintain cellular heterogeneity. Two dysplastic stem cell (DSC) populations are also identified in dysplastic cells, which exhibited different clonogenic potentials. Therefore, Kras activation controls cellular dynamics and progression to dysplasia, and DSCs might contribute to cellular heterogeneity in dysplastic cell lineages.
Nature medicine 2018 OCT

Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma.

M. Cerezo et al.

Abstract

Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5' cap of mRNAs, regulates the surface expression of interferon-$\gamma$-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.
Science signaling 2018 MAY

Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density.

J. R. James

Abstract

The T cell antigen receptor (TCR) recognizes peptides from pathogenic proteins bound in the major histocompatibility complex (MHC). To convert this binding event into downstream signaling, the TCR complex contains immunoreceptor tyrosine-based activation motifs (ITAMs) that act as docking sites for the cytoplasmic tyrosine kinase ZAP-70. Unique among antigen receptors, the TCR complex uses 10 ITAMs to transduce peptide-MHC binding to the cell interior. Using synthetic, drug-inducible receptor-ligand pairs, it was found that greater ITAM multiplicity primarily enhanced the efficiency with which ligand binding was converted into an intracellular signal. This manifested as an increase in the fraction of cells that became activated in response to antigen, and a more synchronous initiation of TCR-proximal signaling, rather than direct amplification of the intracellular signals. Exploiting these findings, the potency and selectivity of chimeric antigen receptors targeted against cancer were substantially enhanced by modulating the number of encoded ITAMs.
Frontiers in immunology 2018

NoxO1 Controls Proliferation of Colon Epithelial Cells.

F. Moll et al.

Abstract

Aim Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. Results NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. Conclusion NoxO1 affects colon epithelium homeostasis and prevents inflammation.
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.