ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

Human T cell activation and expansion reagent
Catalog #
10970_C
Human T cell activation and expansion reagent
From: 153 USD

Overview

Achieve robust activation and expansion of T cells in the absence of magnetic beads, feeder cells, or antigens.

This product’s gentle activation stimulus ensures a high viability of activated T cells, which can be further expanded in ImmunoCult™-XF T Cell Expansion Medium (Catalog #10981) or other media for culturing human T cells. ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator consists of soluble antibody complexes that bind to and cross-link CD3, CD28, and CD2 cell surface ligands, thereby providing the required primary and co-stimulatory signals for T cell activation.

This product is designed for cell therapy research applications, but may be qualified for use as an ancillary material (AM) following the framework outlined in USP<1043>. STEMCELL can work with you to qualify this reagent as an AM under an approved investigational new drug (IND) or clinical trial application (CTA). Learn more about how we can support your regulatory needs here.
Advantages
• Robust activation and expansion of human T cells without the use of magnetic beads, feeder cells, or antigen
• Provides a gentle activation stimulus that maintains high viability of activated and expanded T cells
• Highly stable, filter-sterilized soluble reagent
Contains
• Anti-human CD3 monospecific antibody complex
• Anti-human CD28 monospecific antibody complex
• Anti-human CD2 monospecific antibody complex
Subtype
Supplements
Cell Type
T Cells, T Cells, CD4+, T Cells, CD8+
Species
Human
Application
Activation, Cell Culture, Expansion
Brand
ImmunoCult
Area of Interest
Cell Therapy, Immunology

Scientific Resources

Product Documentation

Document Type Product Name Catalog # Lot # Language
Document Type
Product Information Sheet
Product Name
ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator
Catalog #
10970, 10990
Lot #
All
Language
English
Document Type
Safety Data Sheet
Product Name
ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator
Catalog #
10970, 10990
Lot #
All
Language
English

Educational Materials (20)

Brochure
Tools For Your Immunology Research
Brochure
T Cell Reagents for Your Cellular Therapy Research
Brochure
Isolate Human Immune Cells
Technical Bulletin
Optimization of Human T Cell Expansion Protocol: Effects of Early Cell Dilution
Wallchart
Human Immune Cytokines
Wallchart
Antigen Processing and Presentation
Wallchart
The Immune Response to HIV Poster
Wallchart
Production of Chimeric Antigen Receptor T Cells
Wallchart
Frequencies of Cell Types in Human Peripheral Blood
Video
CAR T Cell Manufacturing Workflow: Isolation, Activation and Expansion
0:59
CAR T Cell Manufacturing Workflow: Isolation, Activation and Expansion
Video
How to Isolate PBMCs from Whole Blood Using Density Gradient Centrifugation (Ficoll™ or Lymphoprep™)
1:37
How to Isolate PBMCs from Whole Blood Using Density Gradient Centrifugation (Ficoll™ or Lymphoprep™)
Video
How to Isolate Cells Directly from Whole Blood Using the EasySep™ Purple/Silver Magnets
4:30
How to Isolate Cells Directly from Whole Blood Using the EasySep™ Purple/Silver Magnets
Video
How EasySep™ Magnetic Cell Separation Technology Works: Fast and Easy Cell Isolation
1:57
How EasySep™ Magnetic Cell Separation Technology Works: Fast and Easy Cell Isolation
Webinar
T Cell Differentiation and Cancer Immunity
48:32
T Cell Differentiation and Cancer Immunity
Webinar
Online Immunology Journal Club: Human In Vitro T Cell Development
31:22
Online Immunology Journal Club: Human In Vitro T Cell Development
Webinar
Accelerating T Cell Therapy Research
Webinar
Qualification of Ancillary/Raw Materials for Clinical Use
54:39
Qualification of Ancillary/Raw Materials for Clinical Use
Scientific Poster
Rapid Expansion of Functional Human T Cells Using a Novel Serum-Free and Xeno-Free Culture Medium
Scientific Poster
Optimization of Human T Cell Activation and Expansion Protocols Improves Efficiency of Genetic Modification and Overall Cell Yield
Scientific Poster
Workflow Solutions for Human T Cell Isolation and Expansion
Load More Educational Materials

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Activated Morphology of Human T Cells Stimulated With ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

Figure 1. Activated Morphology of Human T Cells Stimulated With ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

Image of human T cells isolated using the EasySep™ Human T Cell Isolation Kit (Catalog #17951), stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator, and cultured in ImmunoCult™-XF T Cell Expansion Medium (Catalog #10981).

Activation of EasySep™ Isolated Human T Cells Stimulated With ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

Figure 2. Activation of EasySep™ Isolated Human T Cells Stimulated With ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

EasySep™-isolated human T cells were stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator and cultured in ImmunoCult™-XF T Cell Expansion Medium. Activation of viable CD3+ T cells was assessed by CD25 expression using flow cytometry. On day 0, the frequency of CD25 positive cells was (A) 5.6 ± 2.4% (mean ± SD). Following 3 days of culture, the frequency of CD25 positive cells was (B) 88.8 ± 3.2% (mean ± SD) when stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator.

Robust Human T Cell Expansion with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

Figure 3. Robust Human T Cell Expansion with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

EasySep™-isolated human T cells were expanded over 12 days with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator in ImmunoCult™-XF T Cell Expansion Medium supplemented with Human Recombinant IL-2. On day 0, 1 x 10^6 EasySep™-isolated human T cells were stimulated with 25 μL of ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator in ImmunoCult™-XF T Cell Expansion Medium supplemented with 10 ng/mL Human Recombinant IL-2. On days 3, 5, 7, and 10, viable cells were counted and fresh medium supplemented with IL-2 was added. No additional ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator was added during the 12-day culture period (mean ± SD in 6 experiments with 3 donors).

Publications (5)

Cancer research 2020 sep Plasma Gelsolin Inhibits CD8+ T-cell Function and Regulates Glutathione Production to Confer Chemoresistance in Ovarian Cancer. M. Asare-Werehene et al.

Abstract

Although initial treatment of ovarian cancer is successful, tumors typically relapse and become resistant to treatment. Because of poor infiltration of effector T cells, patients are mostly unresponsive to immunotherapy. Plasma gelsolin (pGSN) is transported by exosomes (small extracellular vesicle, sEV) and plays a key role in ovarian cancer chemoresistance, yet little is known about its role in immunosurveillance. Here, we report the immunomodulatory roles of sEV-pGSN in ovarian cancer chemoresistance. In chemosensitive conditions, secretion of sEV-pGSN was low, allowing for optimal CD8+ T-cell function. This resulted in increased T-cell secretion of IFN$\gamma$, which reduced intracellular glutathione (GSH) production and sensitized chemosensitive cells to cis-diaminedichloroplatinum (CDDP)-induced apoptosis. In chemoresistant conditions, increased secretion of sEV-pGSN by ovarian cancer cells induced apoptosis in CD8+ T cells. IFN$\gamma$ secretion was therefore reduced, resulting in high GSH production and resistance to CDDP-induced death in ovarian cancer cells. These findings support our hypothesis that sEV-pGSN attenuates immunosurveillance and regulates GSH biosynthesis, a phenomenon that contributes to chemoresistance in ovarian cancer. SIGNIFICANCE: These findings provide new insight into pGSN-mediated immune cell dysfunction in ovarian cancer chemoresistance and demonstrate how this dysfunction can be exploited to enhance immunotherapy.
Science advances 2020 may Competition between PAF1 and MLL1/COMPASS confers the opposing function of LEDGF/p75 in HIV latency and proviral reactivation. R. Gao et al.

Abstract

Transcriptional status determines the HIV replicative state in infected patients. However, the transcriptional mechanisms for proviral replication control remain unclear. In this study, we show that, apart from its function in HIV integration, LEDGF/p75 differentially regulates HIV transcription in latency and proviral reactivation. During latency, LEDGF/p75 suppresses proviral transcription via promoter-proximal pausing of RNA polymerase II (Pol II) by recruiting PAF1 complex to the provirus. Following latency reversal, MLL1 complex competitively displaces PAF1 from the provirus through casein kinase II (CKII)-dependent association with LEDGF/p75. Depleting or pharmacologically inhibiting CKII prevents PAF1 dissociation and abrogates the recruitment of both MLL1 and Super Elongation Complex (SEC) to the provirus, thereby impairing transcriptional reactivation for latency reversal. These findings, therefore, provide a mechanistic understanding of how LEDGF/p75 coordinates its distinct regulatory functions at different stages of the post-integrated HIV life cycles. Targeting these mechanisms may have a therapeutic potential to eradicate HIV infection.
Scientific reports 2019 nov PD-1+ melanocortin receptor dependent-Treg cells prevent autoimmune disease. F. Muhammad et al.

Abstract

Experimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis marked by ocular autoantigen-specific regulatory immunity in the spleen. The melanocortin 5 receptor (MC5r) and adenosine 2 A receptor (A2Ar) are required for induction of post-EAU regulatory T cells (Tregs) which provide resistance to EAU. We show that blocking the PD-1/PD-L1 pathway prevented suppression of EAU by post-EAU Tregs. A2Ar induction of PD-1+FoxP3+ Tregs in uveitis patients was similar compared to healthy controls, but was significantly reduced with melanocortin stimulation. Further, lower body mass index correlated with responsiveness to stimulation of this pathway. These observations indicate an importance of the PD-1/PD-L1 pathway to provide resistance to relapsing uveitis and shows a reduced capacity of uveitis patients to induce Tregs when stimulated through melanocortin receptors, but that it is possible to bypass this part of the pathway through direct stimulation of A2Ar.
The Journal of clinical investigation 2019 dec Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. A. H. Mandarano et al.

Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and post-exertional malaise. There is little known about the metabolism of specific immune cells in ME/CFS patients. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 ME/CFS patients and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism, and plasma cytokines. We found that ME/CFS CD8+ T cells have reduced mitochondrial membrane potential compared to healthy controls. Both CD4+ and CD8+ T cells from ME/CFS patients had reduced glycolysis at rest, while CD8+ T cells also had reduced glycolysis following activation. ME/CFS patients had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.
Blood 2016 JUL LFA-1 integrin antibodies inhibit leukocyte α4β1-mediated adhesion by intracellular signaling. Grö et al.

Abstract

Binding of ICAM-1 (intercellular adhesion molecule-1) to the β2-integrin LFA-1 (leukocyte function associated antigen-1) is known to induce crosstalk to the α4β1 integrin. Using different LFA-1 monoclonal antibodies we have been able to study the requirement and mechanism of action for the crosstalk in considerable detail. LFA-1 activating antibodies and those inhibitory antibodies that signal to α4β1 induce phosphorylation of Thr-758 on the β2-chain, which is followed by binding of 14-3-3 proteins and signaling through the G protein exchange factor Tiam1. This results in dephosphorylation of Thr-788/789 on the β1-chain of α4β1 and loss of binding to its ligand VCAM-1 (vascular cell adhesion molecule-1). The results show that with LFA-1 antibodies, we can either 1) activate LFA-1 and inhibit α4β1, 2) inhibit both LFA-1 and α4β1, 3) inhibit LFA-1 but not α4β1 or 4) not affect LFA-1 or α4β1 These findings are important for the understanding of integrin regulation and for the interpretation of the effect of integrin antibodies and their use in clinical applications.
View All Publications

Contact STEMCELL Technologies

Our Customer Service, Sales, and Product and Scientific Support departments in North America are available between 6 am and 5 pm Pacific Time (9 am and 8 pm Eastern Time). One of our representatives will be happy to help you by telephone or email. Please complete the form to contact us by email. A representative will get back to you shortly.
  •  

StemCell Technologies Inc. and affiliates ("STEMCELL Technologies") does not share your email address with third parties. StemCell Technologies Inc. will use your email address to confirm your identity and send you newsletters, transaction-related emails, promotional and customer service emails in accordance with our privacy policy. You can change your email preferences at any time.