STEMdiff™ APEL™2 Medium

Defined, animal component-free medium for differentiation of human ES and iPS cells to multiple lineages

More Views

From: 139 USD


* Required Fields

Catalog # (Select a product)
Defined, animal component-free medium for differentiation of human ES and iPS cells to multiple lineages
From: 139 USD


STEMdiff™ APEL™ 2 Medium is a fully defined, serum-free and animal component-free medium for the differentiation of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. It is based on the APEL formulation published by Dr. Andrew Elefanty and lacks undefined components such as protein-free hybridoma medium.

STEMdiff™ APEL™ 2 can be used in adherent or embryoid body (EB)-based protocols, such as with AggreWell™ . It can be used with a variety of different induction factors or cytokines to support differentiation along ectoderm, mesoderm and endoderm lineages.
• Compatible with TeSR™-cultured human ES and iPS cells
• Compatible with adherent or EB culture differentiation protocols
• Capable of supporting endoderm, mesoderm and ectoderm differentiation, when specific cytokines or induction factors are added
Specialized Media
Cell Type:
Pluripotent Stem Cells
Differentiation; Cell Culture
Area of Interest:
Stem Cell Biology; Drug Discovery and Toxicity Testing
Animal Component-Free; Serum-Free; Defined

Scientific Resources

Educational Materials


Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Stem Cell Research 2016 JUN

Generation of functional podocytes from human induced pluripotent stem cells

Ciampi O et al.


Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.
Experimental hematology 2016 JAN

GSK3$\$ activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells.

Kitajima K et al.


WNT/$\$-CATENIN signaling promotes the hematopoietic/endothelial differentiation of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs). The transient addition of a GSK3$\$ (GSKi) has been found to facilitate in vitro endothelial cell differentiation from hESCs/hiPSCs. Because hematopoietic and endothelial cells are derived from common progenitors (hemogenic endothelial progenitors [HEPs]), we examined the effect of transient GSKi treatment on hematopoietic cell differentiation from hiPSCs. We found that transient GSKi treatment at the start of hiPSC differentiation induction altered the gene expression profile of the cells. Multiple CDX/HOX genes, which are expressed in the posterior mesoderm of developing embryos, were significantly upregulated by GSKi treatment. Further, inclusion of the GSKi in a serum- and stroma-free culture with chemically defined medium efficiently induced HEPs, and the HEPs gave rise to various lineages of hematopoietic and endothelial cells. Therefore, transient WNT/$\$-CATENIN signaling triggers activation of the CDX/HOX pathway, which in turn confers hemogenic posterior mesoderm identity to differentiating hiPSCs. These data enhance our understanding of human embryonic hematopoietic/endothelial cell development and provide a novel in vitro system for inducing the differentiation of hematopoietic cells from hiPSCs.
Stem cells and development 2015 MAY

Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

Song B et al.


The generation of beta-thalassemia ($\$-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the $\$-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected $\$-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct $\$-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected $\$-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected $\$-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected $\$-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of $\$-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of $\$-Thal iPSC-derived HSCs in transplantation.
Biomaterials 2015 MAY

Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation.

Toh Y-CC et al.


Heterogeneity in human pluripotent stem cell (PSC) fates is partially caused by mechanical asymmetry arising from spatial polarization of cell-cell and cell-matrix adhesions. Independent studies have shown that integrin and E-cadherin adhesions promote opposing differentiation and pluripotent fates respectively although their crosstalk mechanism in modulating cell fate heterogeneity remains unknown. Here, we demonstrated that spatial polarization of integrin and E-cadherin adhesions in a human PSC colony compete to recruit Rho-ROCK activated myosin II to different localities to pattern pluripotent-differentiation decisions, resulting in spatially heterogeneous colonies. Cell micropatterning was used to modulate the spatial polarization of cell adhesions, which enabled us to prospectively determine localization patterns of activated myosin II and mesoendoderm differentiation. Direct inhibition of Rho-ROCK-myosin II activation phenocopied E-cadherin rather than integrin inhibition to form uniformly differentiated colonies. This indicated that E-cadherin was the primary gatekeeper to differentiation progression. This insight allows for biomaterials to be tailored for human PSC maintenance or differentiation with minimal heterogeneity.
Scientific Reports 2015 MAY

A method for human teratogen detection by geometrically confined cell differentiation and migration

Xing J et al.


Unintended exposure to teratogenic compounds can lead to various birth defects; however current animal-based testing is limited by time, cost and high inter-species variability. Here, we developed a human-relevant in vitro model, which recapitulated two cellular events characteristic of embryogenesis, to identify potentially teratogenic compounds. We spatially directed mesoendoderm differentiation, epithelial-mesenchymal transition and the ensuing cell migration in micropatterned human pluripotent stem cell (hPSC) colonies to collectively form an annular mesoendoderm pattern. Teratogens could disrupt the two cellular processes to alter the morphology of the mesoendoderm pattern. Image processing and statistical algorithms were developed to quantify and classify the compounds' teratogenic potential. We not only could measure dose-dependent effects but also correctly classify species-specific drug (Thalidomide) and false negative drug (D-penicillamine) in the conventional mouse embryonic stem cell test. This model offers a scalable screening platform to mitigate the risks of teratogen exposures in human.
Chat with an Expert