ArciTect™
ArciTect™ CRISPR-Cas9 Genome Editing System for Cell Biologists
The ArciTect™ product family is a CRISPR-Cas9 genome editing system that uses ribonucleoprotein (RNP) complexes composed of purified Cas9 protein and custom synthetic guide RNA. Compared to previous technologies that utilize plasmid or mRNA-based systems, an RNP-based system enables efficient delivery and expression of CRISPR machinery in difficult-to-manipulate cells, including stem and primary cells. Once inside the cell, the RNP complexes will not induce the cellular immune response and will degrade in a timely manner to reduce off-target effects (Table 1). With validated reagents and protocols, the ArciTect™ system enables you to perform high-efficiency genome editing and generate functional gene-edited cells in your own lab.

Overcome Hurdles in Efficiency
Overcome challenges in efficient delivery and expression of CRISPR machinery using an RNP-based CRISPR-Cas9 system. ArciTect™ enables researchers to perform high-efficiency genome editing in difficult-to-manipulate cell types, including stem and primary cells.
Why Use ArciTect™?
- Maximize delivery and expression in difficult-to-manipulate cell types by using RNP complexes.
- Simplify genome editing with an integrated guide RNA design tool and cell-type-specific protocols.
- Get to your results faster with ready-to-use purified Cas9 proteins and synthetic guide RNAs.
- Minimize potential off-target cutting with timely degradation of the RNP complex.

Figure 1. Genome Editing Workflow
Table 1. Comparison Between Different CRISPR Methods. 1

Genome Editing Protocols and Data
Explore step-by-step instructions for performing high-efficiency genome editing using CRISPR-Cas9 in a variety of cell lines, including stem and primary cell types. The protocols are optimized and validated with a case study and supporting data, and include important cell culture considerations and methods to evaluate editing efficiency.
Human Pluripotent Stem Cells (hPSCs)
Gene knockout and knock-in in hPSCs using electroporation and chemical transfection.
Case study: Knockout and Knock-in optimization through GFP to BFP conversion
Human Primary T Cells
Gene knockout in primary human T cells using electroporation.
Case study: Evaluation of optimal culture methods for high-efficiency TRAC knockout
CD34+ Human Hematopoietic Stem and Progenitor Cells (HSPCs)
Gene knockout in HSPCs using electroporation.
Case study: Evaluation of optimal culture methods for high-efficiency genome editing in CD34+ HSPCs
Human Intestinal Organoids
Gene knockout in human adult stem cell-derived intestinal organoids using electroporation.
Genome Editing Products
Scientific Resources
Wiley E-book: Genome Editing Applications
Learn about next-generation disease modeling using CRISPR, including comprehensive genome editing strategies for complex cell culture models, suggestions for optimizing experimental conditions, and troubleshooting tips.
References
- Liang X et al. (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 208: 44-53.