TeSR™-E6

Defined, serum-free, xeno-free medium for pluripotent stem cells
TeSR™-E6

Defined, serum-free, xeno-free medium for pluripotent stem cells

1 Kit
Catalog # 05946
195 USD

Overview

TeSR™-E6 is a defined, serum- and xeno-free medium that is based on the formulation of TeSR™-E8™, but does not contain transforming growth factor β (TGF-β) or basic fibroblast growth factor (bFGF). It may be used as a basal medium for differentiation of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, or other applications where removal of the above cytokines is desirable.
Components
  • TeSR™-E5/E6 Basal Medium, 475 mL
  • TeSR™-E6 20X Supplement, 25 mL
Subtype
Specialized Media
Cell Type
Pluripotent Stem Cells
Species
Human
Application
Cell Culture, Characterization, Differentiation
Brand
TeSR
Area of Interest
Drug Discovery and Toxicity Testing, Stem Cell Biology
Formulation
Serum-Free, Xeno-Free

Related Products

Scientific Resources

Product Documentation

Document Type Product Name Catalog # Lot # Language
Document Type
Product Information Sheet
Product Name
TeSR™-E6
Catalog #
05946
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Product Name
TeSR™-E6
Catalog #
05946
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Product Name
TeSR™-E6
Catalog #
05946
Lot #
All
Language
English

Educational Materials(4)

Brochure
Products for Human Pluripotent Stem Cells
Brochure
qPCR Arrays for Cell Characterization
Brochure
Maximize Your Pluripotential with the TeSR™ Family of hPSC Culture Media
Wallchart
Directed Differentiation of Pluripotent Stem Cells

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Publications (1)

Cell metabolism 2016 SEP $$-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells. TeSlaa T et al.

Abstract

Pluripotent stem cells (PSCs) can self-renew or differentiate from naive or more differentiated, primed, pluripotent states established by specific culture conditions. Increased intracellular $$-ketoglutarate ($$KG) was shown to favor self-renewal in naive mouse embryonic stem cells (mESCs). The effect of $$KG or $$KG/succinate levels on differentiation from primed human PSCs (hPSCs) or mouse epiblast stem cells (EpiSCs) remains unknown. We examined primed hPSCs and EpiSCs and show that increased $$KG or $$KG-to-succinate ratios accelerate, and elevated succinate levels delay, primed PSC differentiation. $$KG has been shown to inhibit the mitochondrial ATP synthase and to regulate epigenome-modifying dioxygenase enzymes. Mitochondrial uncoupling did not impede $$KG-accelerated primed PSC differentiation. Instead, $$KG induced, and succinate impaired, global histone and DNA demethylation in primed PSCs. The data support $$KG promotion of self-renewal or differentiation depending on the pluripotent state.
View All Publications

Contact STEMCELL Technologies

Our Customer Service, Sales, and Product and Scientific Support departments in North America are available between 6 am and 5 pm Pacific Time (9 am and 8 pm Eastern Time). One of our representatives will be happy to help you by telephone or email. Please complete the form to contact us by email. A representative will get back to you shortly.
  •  

StemCell Technologies Inc. and affiliates ("STEMCELL Technologies") does not share your email address with third parties. StemCell Technologies Inc. will use your email address to confirm your identity and send you newsletters, transaction-related emails, promotional and customer service emails in accordance with our privacy policy. You can change your email preferences at any time.