PneumaCult™-ALI Medium

Serum- and BPE-free medium for human airway epithelial cells cultured at the air-liquid interface or as airway organoids

More Views

PneumaCult™-ALI Medium with 12 mm Transwell® Inserts

Medium and Transwell® inserts for human airway epithelial cells cultured at the air-liquid interface

1 Kit
Catalog #05021
466 USD

PneumaCult™-ALI Medium with 6.5 mm Transwell® Inserts

Medium and Transwell® inserts for human airway epithelial cells cultured at the air-liquid interface

1 Kit
Catalog #05022
466 USD

PneumaCult™-ALI Medium

Serum- and BPE-free medium for human airway epithelial cells cultured at the air-liquid interface or as airway organoids

1 Kit
Catalog #05001
197 USD

Required Products


PneumaCult™-ALI Medium (Catalog #05001) is a serum- and BPE-free medium for the culture of human airway epithelial cells at the air-liquid interface (ALI). Airway epithelial cells cultured in PneumaCult™-ALI Medium undergo extensive mucociliary differentiation to form a pseudostratified epithelium that exhibits morphological and functional characteristics similar to those of the human airway in vivo. PneumaCult™-ALI Medium is also available in a kit that includes 12 mm Transwell® inserts (Catalog #05021) or 6.5 mm Transwell® inserts (Catalog #05022).

Additionally, PneumaCult™-ALI Medium supports the generation of differentiated airway organoids in a 3D culture system. For a detailed protocol, refer to the Technical Bulletin: A Sphere Culture Method for Mucociliary Differentiation of Primary Human Bronchial Epithelial Cells (Document #28216), available at or contact us to request a copy.

Together, PneumaCult™-ALI Medium and PneumaCult™-Ex Plus Medium (Catalog #05040) constitute a fully integrated BPE-free culture system for in vitro human airway modeling. This robust and defined system is a valuable tool for basic respiratory research, toxicity studies, and drug development.
• HBECs cultured with PneumaCult™-ALI undergo extensive mucociliary differentiation to form a pseudostratified epithelium that closely resembles the human airway
• PneumaCult™-ALI is serum-free and BPE-free to minimize variability
  • PneumaCult™-ALI Basal Medium, 450 mL
  • PneumaCult™-ALI 10X Supplement, 50 mL
  • PneumaCult™-ALI Maintenance Supplement (100X), 5 x 1 mL
Specialized Media
Cell Type:
Airway Cells
Cell Culture; Differentiation; Maintenance; Organoid Culture; Spheroid Culture
Area of Interest:
Disease Modeling; Drug Discovery and Toxicity Testing; Epithelial Cell Biology
Serum-Free; Defined

Scientific Resources

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Research Area Workflow Stages for
Workflow Stages

Data and Publications


Figure 1. Overview of the PneumaCult™ Culture System

Expansion of human bronchial epithelial cells (HBECs) in submerged culture is performed with PneumaCult™-Ex Plus or PneumaCult™-Ex. During the early “Expansion Phase” of the ALI culture procedure, PneumaCult™-Ex Plus or PneumaCult™-Ex is applied to the apical and basal chambers. Upon reaching confluence, the culture is air-lifted by removing the culture medium from both chambers, and adding PneumaCult™-ALI to the basal chamber only. Differentiation into a pseudostratified mucociliary epithelium is obtained following 21-28 days of incubation and can be maintained for more than one year.

Figure 2. HBECs Cultured in PneumaCult™-Ex Successfully Differentiate into a Pseudostratified Mucociliary Epithelium with PneumaCult™-ALI

Early-passage (P1-3) HBECs cultured in PneumaCult™-Ex successfully differentiate when cultured at air-liquid interface with PneumaCult™-ALI for 28 days. H&E staining revealed the pseudostratifi ed structure of the epithelium with cilia present at the apical surface (A). Periodic acid-Schiff staining demonstrated the presence of goblet cells (B). The presence of ciliated and goblet cells was also demonstrated by immunofl uorescence staining of cilia marker acetylated (AC)-Tubulin (green; C) and the goblet cell marker Mucin5AC (green; D). Appropriate positioning of basal cells along the transwell insert was visualized by immunofl uorescence staining using the basal cell markers p75NTR (green) and p63 (red; E,F). A representative merged image indicates the apical cells, detected by DAPI alone, positioned along the epithelium and in close contact with the basal cells (detected by DAPI, p63 and p75NTR co-labeling) located along the insert (G).

Figure 3. Electrophysiological characterization of differentiated HBECs (P4) that were expanded in PneumaCult™-Ex Plus, PneumaCult™-Ex, and Bronchial Epithelial Growth Media

TEER (A) and representative characterization of the ion channel activities (B) for ALI cultures at 28 days post air-lift using HBECs expanded in PneumaCult™-Ex Plus, PneumaCult™-Ex, or Bronchial Epithelial Growth Media. Amiloride: ENaC inhibitor. IBMX and Forskolin: CFTR activators. Genistein: CFTR potentiator. CFTRinh-172: CFTR inhibitor. UTP: Calciumactivated Chloride channels (CaCCs) activator. All ALI differentiation cultures were performed using PneumaCult™-ALI.

Figure 4. Schematic of Sphere Culture Method Optimized for PneumaCult™-ALI Medium

Figure 5. Morphology of Bronchospheres Generated in PneumaCult™-ALI Medium

At Day 2, bronchospheres were small in size. By Day 17 the bronchospheres were larger in size with approximately 70% containing a visible lumen. By Day 28 almost all bronchospheres contained a lumen.


Scientific reports 2016 JUL

Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease.

Schamberger AC et al.


Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase 3 (GPX3) in murine and human lung fibrosis. Superoxide dismutase 3 (Sod3), Gpx3, and Gpx activity were increased in mouse BALF during bleomycin-induced lung fibrosis. In lung tissue homogenates, Gpx3, but not Sod3, was upregulated and detergent solubility profiling indicated that Gpx3 associated with ECM proteins. Immunofluorescence analysis showed that Gpx3 was expressed by bronchial epithelial cells and interstitial fibroblasts and localized to the basement membrane and interstitial ECM in lung tissue. As to human ILD samples, BALF of some patients contained high levels of GPX3, and GPX3 was upregulated in lung homogenates from IPF patients. GPX3 expression in primary human bronchial epithelial cells and lung fibroblasts was downregulated by TNF-$$, but more variably regulated by TGF-$$1 and menadione. In conclusion, the antioxidant enzyme GPX3 localizes to lung ECM and is variably upregulated in ILD.
Biomaterials 2016 JAN

Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold

Crowley C et al.


Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design.
PloS one 2016 JAN

3D Reconstruction of the Human Airway Mucosa In Vitro as an Experimental Model to Study NTHi Infections.

Marrazzo P et al.


We have established an in vitro 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular, we reported that the mature model, entirely constituted of primary cells of human origin, develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary, we propose our in vitro model as a reliable and potentially customizable system to study mid/long term host-pathogen processes.
Stem Cell 2016

Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells Cell Stem Cell Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells

Mou H et al.


Graphical Abstract Highlights d SMAD activity is active in suprabasal cells but is weaker in basal epithelial cells d SMAD signaling activity correlates with mucociliary differentiation in the airway d Dual TGFb/BMP inhibition prevents spontaneous differentiation in culture d Dual TGFb/BMP inhibition allows prolonged culture of diverse epithelial basal cells Correspondence In Brief Mou et al. show that small-molecule-mediated SMAD signaling inhibition allows prolonged feeder-free culture of diverse functional epithelial basal stem cells in a 2D format. This methodology provides a facile patient-specific epithelial disease modeling platform, as shown by the expansion of airway epithelium from non-invasively obtained specimens from cystic fibrosis patients.
Journal of virology 2015 OCT

Identification and Functional Analysis of Novel Nonstructural Proteins of Human Bocavirus 1.

Shen W et al.


UNLABELLED: Human bocavirus 1 (HBoV1) is a single-stranded DNA parvovirus that causes lower respiratory tract infections in young children worldwide. In this study, we identified novel splice acceptor and donor sites, namely, A1' and D1', in the large nonstructural protein (NS1)-encoding region of the HBoV1 precursor mRNA. The novel small NS proteins (NS2, NS3, and NS4) were confirmed to be expressed following transfection of an HBoV1 infectious proviral plasmid and viral infection of polarized human airway epithelium cultured at an air-liquid interface (HAE-ALI). We constructed mutant pIHBoV1 infectious plasmids which harbor silent mutations (sm) smA1' and smD1' at the A1' and D1' splice sites, respectively. The mutant infectious plasmids maintained production of HBoV1 progeny virions at levels less than five times lower than that of the wild-type plasmid. Importantly, the smA1' mutant virus that does not express NS3 and NS4 replicated in HAE-ALI as effectively as the wild-type virus; however, the smD1' mutant virus that does not express NS2 and NS4 underwent an abortive infection in HAE-ALI. Thus, our study identified three novel NS proteins, NS2, NS3, and NS4, and suggests an important function of the NS2 protein in HBoV1 replication in HAE-ALI. IMPORTANCE: Human bocavirus 1 infection causes respiratory diseases, including acute wheezing in infants, of which life-threatening cases have been reported. In vitro, human bocavirus 1 infects polarized human bronchial airway epithelium cultured at an air-liquid interface that mimics the environment of human lower respiratory airways. Viral nonstructural proteins are often important for virus replication and pathogenesis in infected tissues or cells. In this report, we identified three new nonstructural proteins of human bocavirus 1 that are expressed during infection of polarized human bronchial airway epithelium. Among them, we proved that one nonstructural protein is critical to the replication of the virus in polarized human bronchial airway epithelium. The creation of nonreplicating infectious HBoV1 mutants may have particular utility in vaccine development for this virus.
Chat with an Expert