Chat with an Expert

Human Cord Blood CD34+ Cells, Frozen

Primary human cells, frozen
From: 495 USD


* Required Fields

Catalog # (Select a product)
Primary human cells, frozen
From: 495 USD


Primary human CD34+ cells isolated from umbilical cord blood (CB) mononuclear cells (MNCs) include hematopoietic stem and progenitor cells. CD34+ cells are isolated from cord blood using positive immunomagnetic separation techniques, and citrate-phosphate-dextrose (CPD) is added to the cord blood as an anticoagulant. High-resolution HLA typing for Class I and Class II alleles is available upon request.

CD34+ stem and progenitor cells can be used together with a number of products including StemSpan™, MyeloCult™, MethoCult™, and MegaCult™ ­S for the expansion and differentiation of these rare cell types.

Cells were obtained using consent forms and protocols approved by either the Food and Drug Administration (FDA) or an Institutional Review Board (IRB).

Certain products are only available in select territories. Please contact your local Sales representative or Product & Scientific Support at for further information.
• Serum-free cryopreservation medium
• 10% dimethyl sulfoxide (DMSO)
Cell Type:
Hematopoietic Stem and Progenitor Cells
Cell and Tissue Source:
Cord Blood
Donor Status:
The purity of CD34+ cells is ≥ 90% by flow cytometry.

Scientific Resources

Product Documentation

Document Type
Product Name
Catalog #
Lot #
70008, 70008.1, 70008.2, 70008.3, 70008.4, 70008.5, 70008.6

Educational Materials


Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Journal of leukocyte biology 2017 MAY

A neutralizing anti-G-CSFR antibody blocks G-CSF-induced neutrophilia without inducing neutropenia in nonhuman primates.

Scalzo-Inguanti K et al.


Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions, such as rheumatoid arthritis, vasculitis, cystic fibrosis, and inflammatory bowel disease, increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues. We describe a fully human therapeutic anti-G-CSFR antibody (CSL324) that is safe and well tolerated when administered via i.v. infusion to cynomolgus macaques. CSL324 was effective in controlling G-CSF-mediated neutrophilia when administered either before or after G-CSF. A single ascending-dose study showed CSL324 did not alter steady-state neutrophil numbers, even at doses sufficient to completely prevent G-CSF-mediated neutrophilia. Weekly infusions of CSL324 (%10 mg/kg) for 3 wk completely neutralized G-CSF-mediated pSTAT3 phosphorylation without neutropenia. Moreover, repeat dosing up to 100 mg/kg for 12 wk did not result in neutropenia at any point, including the 12-wk follow-up after the last infusion. In addition, CSL324 had no observable effect on basic neutrophil functions, such as phagocytosis and oxidative burst. These data suggest that targeting G-CSFR may provide a safe and effective means of controlling G-CSF-mediated neutrophilia as observed in various inflammatory diseases.
Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 2017 MAR

Mast cells are permissive for rhinovirus replication: potential implications for asthma exacerbations.

Akoto C et al.


BACKGROUND Human rhinoviruses (HRVs) are a major trigger of asthma exacerbations, with the bronchial epithelium being the major site of HRV infection and replication. Mast cells (MCs) play a key role in asthma where their numbers are increased in the bronchial epithelium with increasing disease severity. OBJECTIVE In view of the emerging role of MCs in innate immunity and increased localization to the asthmatic bronchial epithelium, we investigated whether HRV infection of MCs generated innate immune responses which were protective against infection. METHODS The LAD2 MC line or primary human cord blood-derived MCs (CBMCs) were infected with HRV or UV-irradiated HRV at increasing multiplicities of infection (MOI) without or with IFN-β or IFN-λ. After 24 h, innate immune responses were assessed by RT-qPCR and IFN protein release by ELISA. Viral replication was determined by RT-qPCR and virion release by TCID50 assay. RESULTS HRV infection of LAD2 MCs induced expression of IFN-β, IFN-λ and IFN-stimulated genes. However, LAD2 MCs were permissive for HRV replication and release of infectious HRV particles. Similar findings were observed with CBMCs. Neutralization of the type I IFN receptor had minimal effects on viral shedding, suggesting that endogenous type I IFN signalling offered limited protection against HRV. However, augmentation of these responses by exogenous IFN-β, but not IFN-λ, protected MCs against HRV infection. CONCLUSION AND CLINICAL RELEVANCE MCs are permissive for the replication and release of HRV, which is prevented by exogenous IFN-β treatment. Taken together, these findings suggest a novel mechanism whereby MCs may contribute to HRV-induced asthma exacerbations.
Cell death and differentiation 2017 DEC

Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted.

Stutz MD et al.


Mixed lineage kinase domain-like (MLKL)-dependent necroptosis is thought to be implicated in the death of mycobacteria-infected macrophages, reportedly allowing escape and dissemination of the microorganism. Given the consequent interest in developing inhibitors of necroptosis to treat Mycobacterium tuberculosis (Mtb) infection, we used human pharmacologic and murine genetic models to definitively establish the pathophysiological role of necroptosis in Mtb infection. We observed that Mtb infection of macrophages remodeled the intracellular signaling landscape by upregulating MLKL, TNFR1, and ZBP1, whilst downregulating cIAP1, thereby establishing a strong pro-necroptotic milieu. However, blocking necroptosis either by deleting Mlkl or inhibiting RIPK1 had no effect on the survival of infected human or murine macrophages. Consistent with this, MLKL-deficiency or treatment of humanized mice with the RIPK1 inhibitor Nec-1s did not impact on disease outcomes in vivo, with mice displaying lung histopathology and bacterial burdens indistinguishable from controls. Therefore, although the necroptotic pathway is primed by Mtb infection, macrophage necroptosis is ultimately restricted to mitigate disease pathogenesis. We identified cFLIP upregulation that may promote caspase 8-mediated degradation of CYLD, and other necrosome components, as a possible mechanism abrogating Mtb's capacity to coopt necroptotic signaling. Variability in the capacity of these mechanisms to interfere with necroptosis may influence disease severity and could explain the heterogeneity of Mtb infection and disease.
PloS one 2016 DEC

Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

Shah SN et al.


Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.
Journal of thrombosis and haemostasis : JTH 2015 JUN

The gene expression signature of anagrelide provides an insight into its mechanism of action and uncovers new regulators of megakaryopoiesis.

Ahluwalia M et al.


BACKGROUND Anagrelide is a cytoreductive agent used to lower platelet counts in essential thrombocythemia. Although the drug has been known to selectively inhibit megakaryopoiesis for many years, the molecular mechanism accounting for this activity is still unclear. OBJECTIVES AND METHODS To address this issue we have compared the global gene expression profiles of human hematopoietic cells treated ex-vivo with and without anagrelide while growing under megakaryocyte differentiation conditions, using high-density oligonucleotide microarrays. Gene expression data were validated by the quantitative polymerase chain reaction and mined to identify functional subsets and regulatory pathways. RESULTS We identified 328 annotated genes differentially regulated by anagrelide, including many genes associated with platelet functions and with the control of gene transcription. Prominent among the latter was TRIB3, whose expression increased in the presence of anagrelide. Pathway analysis revealed that anagrelide up-regulated genes that are under the control of the transcription factor ATF4, a known TRIB3 inducer. Notably, immunoblot analysis demonstrated that anagrelide induced the phosphorylation of eIF2α, which is an upstream regulator of ATF4, and increased ATF4 protein levels. Furthermore, salubrinal, an inhibitor of eIF2α dephosphorylation, increased the expression of ATF4-regulated genes and blocked megakaryocyte growth. CONCLUSIONS These findings link signaling through eIF2α/ATF4 to the anti-megakaryopoietic activity of anagrelide and identify new potential modulators of megakaryopoiesis.