Chat with an Expert

StemSpan™ CD34+ Expansion Supplement (10X)

Serum-free culture supplement for expansion of human CD34+ hematopoietic cells

More Views

StemSpan™ CD34+ Expansion Supplement (10X)

Serum-free culture supplement for expansion of human CD34+ hematopoietic cells

10 mL
Catalog #02691
804 USD

Overview

StemSpan™ CD34+ Expansion Supplement typically promotes ~40-fold expansion of total nucleated cells in 7-day liquid cultures of CD34+ human cord blood (CB) cells. After one week, ~40% of the cultured cells express CD34, indicative of >10-fold expansion of input CD34+ CB cells. See data tab for more details. StemSpan™ CD34+ Expansion Supplement (10X) contains a combination of recombinant human cytokines (Flt3L, SCF, IL-3, IL-6 and TPO) and other additives formulated to selectively promote the expansion of CD34+ cells isolated from human CB and bone marrow (BM) samples. The CD34+ Expansion Supplement is intended for use in combination with StemSpan™ SFEM, SFEM II and -ACF serum-free expansion media, or any other media for culturing human hematopoietic cells.

This supplement stimulates greater CD34+ cell expansion when compared to StemSpan™ CC100 and CC110. See data tab for more details.
Advantages:
• Formulated to selectively expand and produce large numbers of human CD34+ hematopoietic cells in liquid cultures initiated with CD34+ CB or BM cells.
• Optimized for use with StemSpan™ media. When combined with StemSpan™ SFEM II in particular, supports at least 50% higher expansion of CD34+ human CB cells when compared to other serum-free media on the market.
• Supplied as a 10X concentrate. After thawing and mixing, the tube contents can be added directly to any hematopoietic cell expansion medium of choice
Contains:
• Recombinant human fms-like tyrosine kinase 3 ligand (Flt3L)
• Recombinant human stem cell factor (SCF)
• Recombinant human interleukin 3 (IL-3)
• Recombinant human interleukin 6 (IL-6)
• Recombinant human thrombopoietin (TPO)
• Other additives
Subtype:
Supplements
Cell Type:
Hematopoietic Stem and Progenitor Cells
Species:
Human
Application:
Cell Culture; Expansion
Brand:
StemSpan
Area of Interest:
Stem Cell Biology; Transplantation Research
Formulation:
Serum-Free; Defined

Scientific Resources

Educational Materials

(8)

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Table 1. HSC Expansion Culture with CD34+ Human Cord Blood Cells Cultured in StemSpan™ SFEM Containing CD34+ Expansion Supplement

HSC Expansion Culture with CD34+ Human Cord Blood Cells Cultured in StemSpan™ SFEM Containing CD34+ Expansion Supplement

Shown are the percent CD34+ cells, fold expansion of total nucleated cells (TNC) and CD34+ cells, and numbers of colony-forming units (CFU) produced per input CD34+ cell after 7 days of hsc expansion culture of enriched CD34+ cells from six independent cord blood (CB) samples.
*95% confidence limits, the range within which 95% of the results will typically fall.
ND: not done

Comparison of HSC expansion in different StemSpan™ media containing CD34+ Expansion Supplement

Figure 1. Comparison of CD34+ Cell Expansion in Different StemSpan™ Media Containing CD34+ Expansion Supplement

Average expansion of (A) total nucleated cells (TNC), (B) CD34+ cells and (C) colony-forming units (CFU), normalized relative to the values obtained in StemSpan™ SFEM (grey bars) after culturing purified hematopoietic CD34+ cord blood cells (n=6) for 7 days in StemSpan™ SFEM, SFEM II (gold bars) or ACF (orange bars) media containing CD34+ Expansion Supplement. Vertical lines indicate 95% confidence limits, the range within which 95% of results will typically fall. Cell yields in StemSpan™ SFEM II were on average ~60% higher than in StemSpan™ SFEM and StemSpan™ ACF.
*p<0.001, #p<0.05 (paired t-test, n=6 in A and B, n=4 in C).

Publications

(2)
Cell 2018 JAN

Intrinsic Immunity Shapes Viral Resistance of Stem Cells.

Wu X et al.

Abstract

Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.
Nature methods 2017 APR

Marker-free coselection for CRISPR-driven genome editing in human cells.

Agudelo D et al.

Abstract

Targeted genome editing enables the creation of bona fide cellular models for biological research and may be applied to human cell-based therapies. Therefore, broadly applicable and versatile methods for increasing its efficacy in cell populations are highly desirable. We designed a simple and robust coselection strategy for enrichment of cells with either nuclease-driven nonhomologous end joining (NHEJ) or homology-directed repair (HDR) events by harnessing the multiplexing capabilities of CRISPR-Cas9 and Cpf1 systems. Selection for dominant alleles of the ubiquitous sodium/potassium pump (Na(+)/K(+) ATPase) that rendered cells resistant to ouabain was used to enrich for custom genetic modifications at another unlinked locus of interest, thereby effectively increasing the recovery of engineered cells. The process is readily adaptable to transformed and primary cells, including hematopoietic stem and progenitor cells. The use of universal CRISPR reagents and a commercially available small-molecule inhibitor streamlines the incorporation of marker-free genetic changes in human cells.
STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.