NeuroCult™ NS-A Basal Medium (Human)

Basal medium for expansion of human neural stem and progenitor cells

NeuroCult™ NS-A Basal Medium (Human)

Basal medium for expansion of human neural stem and progenitor cells

From: 112 USD
Catalog #
(Select a product)
Basal medium for expansion of human neural stem and progenitor cells
Add to Wish List
Products for Your Protocol
To see all required products for your protocol, please consult the Protocols and Documentation.

Overview

NeuroCult™ NS-A Basal Medium (Human) is a standardized basal medium for the expansion of human neural stem cells and brain tumor stem cells, in the neurosphere or adherent monolayer culture system. This basal medium is a component of the NeuroCult™ NS-A Proliferation Kit (Human; Catalog #05751) and the NeuroCult™ NS-A Differentiation Kit (Human; Catalog #05752).
Subtype
Basal Media, Specialized Media
Cell Type
Brain Tumor Stem Cells, Neural Stem and Progenitor Cells
Species
Human
Application
Cell Culture, Colony Assay, Differentiation, Expansion, Functional Assay, Spheroid Culture
Brand
NeuroCult
Area of Interest
Cancer, Drug Discovery and Toxicity Testing, Neuroscience, Stem Cell Biology
Formulation Category
Serum-Free

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
05750
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (98)

Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures. V. Sundaramoorthy et al. Viruses 2020 mar

Abstract

Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.
Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. C. P. Couturier et al. Nature communications 2020 jul

Abstract

Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells. We find a conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We also find that this progenitor population contains the majority of the cancer's cycling cells, and, using RNA velocity, is often the originator of the other cell types. Finally, we show that this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer stem cells. Our analyses show that normal brain development reconciles glioblastoma development, suggests a possible origin for glioblastoma hierarchy, and helps to identify cancer stem cell-specific targets.
Higher Order Architecture of Designer Peptides Forms Bioinspired 10 nm siRNA Delivery System. A. Gamboa et al. Scientific reports 2019 nov

Abstract

The higher-order architecture observed in biological systems, like viruses, is very effective in nucleic acid transport. The replications of this system has been attempted with both synthetic and naturally occurring polymers with mixed results. Here we describe a peptide/siRNA quaternary complex that functions as an siRNA delivery system. The rational design of a peptide assembly is inspired by the viral capsids, but not derived from them. We selected the collagen peptide (COL) to provide the structural stability and the folding framework, and hybridize it with the cell penetrating peptide (CPP) that allows for effective penetration of biological barriers. The peptide/siRNA quaternary complex forms stoichiometric, 10 nm nanoparticles, that show fast cellular uptake ({\textless}30 min), effective siRNA release, and gene silencing. The complex provides capsid-like protection for siRNA against nucleases without being immunostimulatory, or cytotoxic. Our data suggests that delivery vehicles based on synthetic quaternary structures that exhibit higher-order architecture may be effective in improving delivery and release of nucleic acid cargo.