EasySep™ Human Naïve CD4+ T Cell Isolation Kit

Immunomagnetic negative selection kit

More Views

From: 778 USD


* Required Fields

Catalog # (Select a product)
Immunomagnetic negative selection kit
From: 778 USD

Required Products


The EasySep™ Human Naïve CD4+ T Cell Isolation Kit is designed to isolate naive CD4+ T cells from fresh or previously frozen peripheral blood mononuclear cells by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes recognizing CD8, CD14, CD16, CD19, CD20, CD25, CD36, CD56, CD61, CD66b, CD123, HLA-DR, TCRγ/δ, glycophorin A, and dextran-coated magnetic particles. CD45RO+ cells are targeted for removal with a biotinylated anti-CD45RO antibody, and a bispecific Tetrameric Antibody Complex that recognizes biotin and dextran. The labeled cells are separated using an EasySep™ magnet without the use of columns. Desired cells are poured off into a new tube.

For even faster cell isolations, we recommend the new EasySep™ Human Naïve CD4+ T Cell Isolation Kit II (17555) which isolates cells in just 11 minutes.
• Fast, easy-to-use and column-free
• Up to 96% purity
• Isolated cells are untouched
  • EasySep™ Human Naïve CD4+ T Cell Isolation Kit (Catalog #19555)
    • EasySep™ Human Naïve CD4+ T Cell Isolation Cocktail, 1 mL
    • EasySep™ Biotinylated Anti-CD45RO Antibody, 1 mL
    • EasySep™ Dextran RapidSpheres™, 1 mL
  • RoboSep™ Human Naïve CD4+ T Cell Isolation Kit (Catalog #19555RF)
    • EasySep™ Human Naïve CD4+ T Cell Isolation Cocktail, 1 mL
    • EasySep™ Biotinylated Anti-CD45RO Antibody, 1 mL
    • EasySep™ Dextran RapidSpheres™, 1 mL
    • RoboSep™ Buffer (Catalog #20104)
    • RoboSep™ Filter Tips (Catalog #20125)
Magnet Compatibility:
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• Easy 50 EasySep™ Magnet (Catalog #18002)
• EasyEights™ EasySep™ Magnet (Catalog #18103)
• RoboSep™-S (Catalog #21000)
Cell Isolation Kits
Cell Type:
T Cells; T Cells, CD4+
Sample Source:
Selection Method:
Cell Isolation
EasySep; RoboSep
Area of Interest:

Scientific Resources

Educational Materials


Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.
Read More

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Typical EasySep™ Human Naïve CD4+ T Cell Isolation Profile

Figure 1. Typical EasySep™ Human Naïve CD4+ T Cell Isolation Profile

Starting with a single-cell suspension of PBMCs, the naïve CD4+ T cell (CD3+CD4+CD45RA+CD45RO-) content of the isolated fraction typically ranges from 91.3% - 96.9%. In the example above, the purities of the start and isolated fraction are 11.1% and 93.2%, respectively.


Scientific Reports 2016 FEB

Staphylococcus aureus-derived factors induce IL-10, IFN-γ and IL-17A-expressing FOXP3(+)CD161(+) T-helper cells in a partly monocyte-dependent manner.

Bjö et al.


Staphylococcus aureus (S. aureus) is a human pathogen as well as a frequent colonizer of skin and mucosa. This bacterium potently activates conventional T-cells through superantigens and it is suggested to induce T-cell cytokine-production as well as to promote a regulatory phenotype in T-cells in order to avoid clearance. This study aimed to investigate how S. aureus impacts the production of regulatory and pro-inflammatory cytokines and the expression of CD161 and HELIOS by peripheral CD4(+)FOXP3(+) T-cells. Stimulation of PBMC with S. aureus 161:2-cell free supernatant (CFS) induced expression of IL-10, IFN-γ and IL-17A in FOXP3(+) cells. Further, CD161 and HELIOS separated the FOXP3(+) cells into four distinct populations regarding cytokine-expression. Monocyte-depletion decreased S. aureus 161:2-induced activation of FOXP3(+) cells while pre-stimulation of purified monocytes with S. aureus 161:2-CFS and subsequent co-culture with autologous monocyte-depleted PBMC was sufficient to mediate activation of FOXP3(+) cells. Together, these data show that S. aureus potently induces FOXP3(+) cells and promotes a diverse phenotype with expression of regulatory and pro-inflammatory cytokines connected to increased CD161-expression. This could indicate potent regulation or a contribution of FOXP3(+) cells to inflammation and repression of immune-suppression upon encounter with S. aureus.