RosetteSep™ Human NK Cell Enrichment Cocktail

Immunodensity negative selection cocktail

More Views

From: 170 USD

Options

* Required Fields

Catalog # (Select a product)
Immunodensity negative selection cocktail
From: 170 USD

.

Required Products

Overview

The RosetteSep™ Human NK Cell Enrichment Cocktail is designed to isolate NK cells from whole blood by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes recognizing non-NK cells and red blood cells (RBCs). When centrifuged over a buoyant density medium such as RosetteSep™ DM-L (Catalog #15705) or Lymphoprep™ (Catalog #07801), the unwanted cells pellet along with the RBCs. The purified NK cells are present as a highly enriched population at the interface between the plasma and the buoyant density medium.
Advantages:
• Fast and easy-to-use
• Requires no special equipment or training
• Isolated cells are untouched
• Can be combined with SepMate™ for consistent, high-throughput sample processing
Components:
  • RosetteSep™ Human NK Cell Enrichment Cocktail (Catalog #15025)
    • RosetteSep™ Human NK Cell Enrichment Cocktail, 2 mL
  • RosetteSep™ Human NK Cell Enrichment Cocktail (Catalog #15065)
    • RosetteSep™ Human NK Cell Enrichment Cocktail, 5 x 2 mL
Subtype:
Cell Isolation Kits
Cell Type:
NK Cells
Species:
Human
Sample Source:
Buffy Coat; Whole Blood
Selection Method:
Negative
Application:
Cell Isolation
Brand:
RosetteSep
Area of Interest:
Immunology

Technical Resources

Educational Materials

(4)

Frequently Asked Questions

What is RosetteSep™?

RosetteSep™ is a rapid cell separation procedure for the isolation of purified cells directly from whole blood, without columns or magnets.

How does RosetteSep™ work?

The antibody cocktail crosslinks unwanted cells to red blood cells (RBCs), forming rosettes. The unwanted cells then pellet with the free RBCs when centrifuged over a density centrifugation medium (e.g. Ficoll-Paque™ PLUS, Lymphoprep™).

What factors affect cell recovery?

The temperature of the reagents can affect cell recovery. All reagents should be at room temperature (sample, density centrifugation medium, PBS, centrifuge) before performing the isolations. Layering can also affect recovery so be sure to carefully layer the sample to avoid mixing with the density centrifugation medium as much as possible. Be sure to collect the entire enriched culture without disturbing the RBC pellet. A small amount of density centrifugation medium can be collected without worry.

Which cell samples can RosetteSep™ be used with?

RosetteSep™ can be used with leukapheresis samples, bone marrow or buffy coat, as long as: the concentration of cells does not exceed 5 x 107 per mL (can dilute if necessary); and there are at least 100 RBCs for every nucleated cell (RBCs can be added if necessary).

Can RosetteSep™ be used with previously frozen or cultured cells?

Yes. Cells should be re-suspended at 2 - 5 x 107 cells / mL in PBS + 2% FBS. Fresh whole blood should be added at 250 µL per mL of sample, as a source of red cells.

Can RosetteSep™ be used to enrich progenitors from cord blood?

Yes. Sometimes cord blood contains immature nucleated red cells that have a lower density than mature RBCs. These immature red cells do not pellet over Ficoll™, which can lead to a higher RBC contamination than peripheral blood separations.

Does RosetteSep™ work with mouse cells?

No, but we have developed EasySep™, a magnetic-based cell isolation system which works with mouse and other non-human species.

Which anticoagulant should be used with RosetteSep™?

Peripheral blood should be collected in heparinized Vacutainers. Cord blood should be collected in ACD.

Should the anticoagulant be washed off before using RosetteSep™?

No, the antibody cocktail can be added directly to the sample.
Read More

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

FACS Histogram Results Using RosetteSep™ Human NK Cell Enrichment Cocktail

Figure 1. FACS Histogram Results Using RosetteSep™ Human NK Cell Enrichment Cocktail

Starting with fresh peripheral blood the CD56+ cell content of the enriched fraction typically ranges from 80 - 98%. *Note: Red blood cells were removed by lysis prior to flow cytometry.

Publications

(45)
Cell 2016 SEP

A Functional Role for Antibodies in Tuberculosis.

Lu LL et al.

Abstract

While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to Fc$RIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.
The Journal of clinical investigation 2016 NOV

Biallelic mutations in IRF8 impair human NK cell maturation and function.

Mace EM et al.

Abstract

Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8-/-, but not Irf8+/-, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense.
Blood 2016 MAR

Decitabine enhances Fc engineered anti-CD33 mAb mediated natural killer antibody dependent cellular cytotoxicity against AML blasts.

Vasu S et al.

Abstract

Acute myeloid leukemia (AML) is the most common type of acute leukemia affecting older individuals at a median age of 67 years. Resistance to intensive induction chemotherapy is the major cause of death in elderly AML; hence novel treatment strategies are warranted. CD33-directed antibody-drug conjugates (Gemtuzumab ozogamicin) have been shown to improve overall survival, validating CD33 as a target for antibody-based therapy of AML. Here we report the in vitro efficacy of BI 836858, a fully human, Fc-engineered, anti-CD33 antibody using AML cell lines and primary AML blasts as targets. BI 836858-opsonized AML cells significantly induced both autologous and allogeneic natural killer (NK)-cell degranulation and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In vitro treatment of AML blasts with decitabine (DAC) or 5-azacytidine, two hypomethylating agents that show efficacy in older patients, did not compromise BI 836858-induced NK cell-mediated ADCC. Evaluation of BI 836858-mediated ADCC in serial marrow AML aspirates in patients who received a ten-day course of DAC (pre-DAC, days 4, 11 and 28 post-DAC) revealed significantly higher ADCC in samples at day 28 post-DAC when compared to pre-DAC treatment. Analysis of ligands (L) to activating receptors (NKG2D showed significantly increased NKG2DL expression in day 28 post-DAC samples compared to pre-DAC samples; when NKG2DL receptor was blocked using antibodies, BI 836858-mediated ADCC was significantly decreased, suggesting that DAC enhances AML blast susceptibility to BI 836858 by upregulating NKG2DL. These data provide a rationale for combination therapy of Fc-engineered antibodies such as BI 836858 with azanucleosides in elderly patients with AML.
Nature immunology 2016 JUN

IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity.

Ohne Y et al.

Abstract

Group 2 innate lymphoid cells (ILC2 cells) are important for type 2 immune responses and are activated by the epithelial cytokines interleukin 33 (IL-33), IL-25 and thymic stromal lymphopoietin (TSLP). Here we demonstrated that IL-1$ was a critical activator of ILC2 cells, inducing proliferation and cytokine production and regulating the expression of epithelial cytokine receptors. IL-1$ also governed ILC2 plasticity by inducing low expression of the transcription factor T-bet and the cytokine receptor chain IL-12R$2, which enabled the conversion of these cells into an ILC1 phenotype in response to IL-12. This transition was marked by an atypical chromatin landscape characterized by the simultaneous transcriptional accessibility of the locus encoding interferon-$ (IFN-$) and the loci encoding IL-5 and IL-13. Finally, IL-1$ potentiated ILC2 activation and plasticity in vivo, and IL-12 acted as the switch that determined an ILC2-versus-ILC1 response. Thus, we have identified a previously unknown role for IL-1$ in facilitating ILC2 maturation and plasticity.
Journal of immunology (Baltimore, Md. : 1950) 2016 JUL

Platelet-Derived Ectosomes Reduce NK Cell Function.

Sadallah S et al.

Abstract

Platelet (PLT) transfusions are potentially life saving for individuals with low PLT numbers; however, previous work revealed that PLT transfusions are associated with increased infection risk. During storage, PLT intended for transfusion continuously shed ectosomes (Ecto) from their surface, which express immunomodulatory molecules like phosphatidylserine or TGF-$1. Recently, PLT-Ecto were shown to reduce proinflammatory cytokine release by macrophages and to favor the differentiation of naive T cells toward regulatory T cells. Whether PLT-Ecto modify NK cells remains unclear. We exposed purified NK cells and full PBMCs from healthy donors to PLT-Ecto. We found a reduced expression of several activating surface receptors (NKG2D, NKp30, and DNAM-1) and decreased NK cell function, as measured by CD107a expression and IFN-$ production. Pretreatment of PLT-Ecto with anti-TGF-$1 neutralizing Ab restored surface receptor expression and NK cell function. We further observed a TGF-$1-mediated upregulation of miR-183, which, in turn, reduced DAP12, an important protein for stabilization and downstream signaling of several activating NK cell receptors. Again, these effects could antagonized, in part, when PLT-Ecto were preincubated with anti-TGF-$1 Ab. Erythrocyte Ecto did not affect NK cells. Polymorphonuclear cell Ecto expressed MHC class I and inhibited NK cell function. In addition, they induced the secretion of TGF-$1 by NK cells, which participated in an auto/paracrine manner in the suppressive activity of polymorphonuclear cell-derived Ecto. In sum, our study showed that PLT-Ecto could inhibit NK cell effector function in a TGF-$1-dependent manner, suggesting that recipients of PLT transfusions may experience reduced NK cell function.
STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.
Chat with an Expert