Make more informed purchasing decisions with our new product availability and delivery estimate feature, now available on all product pages, in your cart, and during checkout.
Sign In
New to STEMCELL?
Register for an account to quickly and easily purchase products online and for one-click access to all educational content.
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
MethoCult™ Express is intended for use in hematopoietic colony-forming unit (CFU) assays of human cord blood (CB) samples, after a minimum culture period of 7 days. It is recommended for use with red blood cell-depleted CB samples, whole CB samples that have been cryopreserved and thawed, and CB mononuclear cells. MethoCult™ Express is optimized for the growth and enumeration of human hematopoietic progenitor cells after much shorter periods than the 14 -16 days of standard CFU assays. In MethoCult™ Express, colonies containing at least 20 cells can be counted as early as after 7 days of culture. At this time, most colonies are immature and have not yet differentiated into morphologically distinguishable colony types. Therefore the colonies counted after 7 days of culture give information about the total frequency of hematopoietic progenitor cells present in the sample without distinction between different progenitor cell types. If MethoCult™ Express cultures are maintained for 14 - 16 days, colonies derived from erythroid progenitor cells (BFU-E), granulocyte-macrophage progenitor cells (CFU-GM, CFU-G, and CFU-M), and multi-potential granulocyte, erythroid, macrophage, and megakaryocyte progenitor cells (CFU-GEMM) can be counted.
This product is designed for use in the following research area(s) as part
of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we
offer to support each research area.
Semi-solid media (methylcellulose-based MethoCult™ and collagen-based MegaCult™-C) allow the clonal progeny of a single progenitor cell to remain spatially isolated from other colonies within a culture, so they may be separately identified and counted.
Why use methylcellulose-based media?
Methylcellulose permits better growth of erythroid colonies than other types of semi-solid support systems (eg. agar) while allowing optimal myeloid colony formation. When appropriate cytokines are present, committed progenitor cells of both erythroid and granulocyte/macrophage lineages (CFU-GM, CFU-G, CFU-M) as well as multi-potential progenitor cells (CFU-GEMM), can be assayed simultaneously in the same culture dish.
Is it necessary to add antibiotics to the media?
No, aseptic technique should be sufficient to maintain sterile cultures. However, antibiotics (eg. Penicillin/Streptomycin) or anti-fungals (eg. Amphotericin B) may be added to the methylcellulose medium if desired.
Is there anything I can do if my cultures appear contaminated?
No, once contamination is visible, it is not possible to rescue the cultures by the addition of antibiotics. Bacteria and yeast inhibit colony formation by depleting nutrients or by releasing toxic substances.
Why can't I use a pipette to dispense methylcellulose-based media?
Methylcellulose is a viscous solution that cannot be accurately dispensed using a pipette due to adherence of the medium to the walls of the pipette tip. Blunt-End, 16 Gauge needles (Catalog #28110), in combination with 3 cc Syringes (Catalog #28230) are recommended for accurate dispensing of MethoCult™.
Can I 'pluck' the colonies for individual analysis?
Yes, colonies can be 'plucked' using a pipette with 200 µL sterile pipette tips or using a glass Pasteur pipette with an elongated tip. Individual colonies should be placed in a volume of 25 - 50 µL of medium, and diluted into suitable culture medium for further culture or analysis.
Why are low adherence dishes so important?
Adherent cells such as fibroblasts can cause inhibition of colony growth and obscure visualization of colonies.
Can MethoCult™ products be used for lymphoid progenitor CFU assays?
Human lymphoid progenitors (B, NK and T) seem to require stromal support for growth therefore cannot be grown in MethoCult™. Mouse pre-B clonogenic progenitors can be grown in MethoCult™ M3630 (Catalog #03630).
Is it possible to set up CFU assays in a 24-well plate?
Yes, as long as a plating concentration optimized for the smaller surface area of a well in a 24-well plate (1.9 cm2 as compared to ~9.5 cm2 for a 35 mm dish) is used for these assays. The number of replicate wells required to get an accurate estimation of CFU numbers may also need to be increased.
Can I stain colonies in MethoCult™ medium?
The cells in individual colonies in MethoCult™ can be stained, eg., for analysis of morphology or phenotype, after they are plucked from the dish and washed free of methylcellulose. Colonies grown in collagen-based MegaCult™-C medium can be used for immunohistochemical or enzymatic staining in situ after dehydration and fixation onto glass slides.
Are there differences in colony morphology with serum-free media?
Serum-containing media generally give better overall growth (colonies may appear larger) but there are no large differences in total colony numbers when CFU assays using serum-free media and serum-containing media are compared, provided that identical cytokines are present.
Can MethoCult™ be made with alternate base media?
Yes, this can be done as a 'custom' media order. Please contact techsupport@stemcell.com for more information.
Is there a MethoCult™ formulation suitable for HPP-CFC (high proliferative potential colony forming cell)?
Yes, MethoCult™ H4535 (Catalog #04535) can be used for the HPP-CFC assay as it does not contain EPO. The culture period is usually 28 days. It is not necessary to feed these cultures as growth factors in the medium are present in excess. As HPP-CFCs can be quite large, overplating can be a problem. It is recommended to plate cells at two or more different concentrations.
NK314 potentiates antitumor activity with adult T-cell leukemia-lymphoma cells by inhibition of dual targets on topoisomerase IIalpha and DNA-dependent protein kinase.
Hisatomi T et al.
Blood 2011 MAR
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive disease, incurable by standard chemotherapy. NK314, a new anticancer agent possessing inhibitory activity specific for topoisomerase IIα (Top2α), inhibited the growth of various ATL cell lines (50% inhibitory concentration: 23-70nM) with more potent activity than that of etoposide. In addition to the induction of DNA double-strand breaks by inhibition of Top2α, NK314 induced degradation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), resulting in impaired DNA double-strand break repair. The contribution of DNA-PK to inhibition of cell growth was affirmed by the following results: NK314 inhibited cell growth of M059J (a DNA-PKcs-deficient cell line) and M059K (a cell line with DNA-PKcs present) with the same potency, whereas etoposide exhibited weak inhibition of cell growth with M059K cells. A DNA-PK specific inhibitor, NU7026, enhanced inhibitory activity of etoposide on M059K as well as on ATL cells. These results suggest that NK314 is a dual inhibitor of Top2α and DNA-PK. Because ATL cells express a high amount of DNA-PKcs, NK314 as a dual molecular targeting anticancer agent is a potential therapeutic tool for treatment of ATL.
Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composition of the graft on transplantation outcomes.
Prasad VK et al.
Blood 2008 OCT
Abstract
Outcomes of 159 young patients with inherited metabolic disorders (IMDs) undergoing transplantation with partially HLA-mismatched unrelated donor umbilical cord blood were studied to investigate the impact of graft and patient characteristics on engraftment, overall survival (OS), and graft-versus-host disease (GVHD). Patients received myeloablative chemotherapy (busulfan, cyclophosphamide, ATG) and cyclosporine-based GVHD prophylaxis. Infused cell doses were high (7.57 x 10(7)/kg) because of the patients' young age (median, 1.5 years) and small size (median, 12 kg). Median follow-up was 4.2 years (range, 1-11 years). The cumulative incidences of neutrophil and platelet engraftment were 87.1% (95% confidence interval [CI], 81.8%-92.4%) and 71.0% (95% CI, 63.7%-78.3%). A total of 97% achieved high (textgreater 90%) donor chimerism. Serum enzyme normalized in 97% of patients with diseases for which testings exist. Grade III/IV acute GVHD occurred in 10.3% (95% CI, 5.4%-15.2%) of patients. Extensive chronic GVHD occurred in 10.8% (95% CI, 5.7%-15.9%) of patients by 1 year. OS at 1 and 5 years was 71.8% (95% CI, 64.7%-78.9%) and 58.2% (95% CI, 49.7%-66.6%) in all patients and 84.5% (95% CI, 77.0%-92.0%) and 75.7% (95% CI, 66.1%-85.3%) in patients with high (80-100) performance score. In multivariate analysis, favorable factors for OS were high pretransplantation performance status, matched donor/recipient ethnicity, and higher infused colony forming units.
Association of post-thaw viable CD34+ cells and CFU-GM with time to hematopoietic engraftment.
Yang H et al.
Bone marrow transplantation 2005 MAY
Abstract
In all, 78 peripheral hematopoietic progenitor cell collections from 52 patients were evaluated using our previously published validated post-thaw assays at the time of collection and following transplantation by assessment of viable CD34(+) cells, and granulocyte-macrophage colony-forming units (CFU-GM) cryopreserved in quality control vials. The median (range) post-thaw recovery of viable CD34(+) cells and CFU-GM was 66.4% (36.1-93.6%) and 63.0% (28.6-85.7%), respectively, which did not show significant correlation with the engraftment of either neutrophils (P=0.136 and 0.417, respectively) or platelets (P=0.88 and 0.126, respectively). However, the reinfused viable CD34(+) cells/kg of patient weight pre- or post-cryopreservation showed significant correlation to engraftment of neutrophils (P=0.0001 and 0.001, respectively) and platelets (P=0.023 and 0.010, respectively), whereas CFU-GM pre- or post-cryopreservation was significantly correlated to neutrophils (P=0.011 and 0.007, respectively) but not to platelets (P=0.112 and 0.100, respectively). The results show that post-cryopreservation assessment of viable CD34(+) cells or CFU-GM is as reliable a predictor of rapid engraftment as that of pre-cryopreservation measures. Therefore, the post-cryopreservation number of viable CD34(+) cells or CFU-GM should be used to eliminate the risks of unforeseen cell loss that could occur during cryopreservation or long-term storage.
Automated and standardized colony counting for the hematopoietic colony-forming unit (CFU) assay
Item added to your cart
MethoCult™ Express
Quality Statement:
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.