EasySep™ HLA B Cell Enrichment Kit

Immunomagnetic negative selection cell isolation kit

More Views

From: 812 USD


* Required Fields

Catalog # (Select a product)
Immunomagnetic negative selection cell isolation kit
From: 812 USD

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

Required Products


The EasySep™ HLA B Cell Enrichment Kit is designed to isolate B cells from fresh or previously frozen peripheral blood mononuclear cells by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes recognizing non-B cells and dextran-coated magnetic particles. The labeled cells are separated using an EasySep™ magnet and without the use of columns. Desired cells are poured off into a new tube and are ready for serology or flow cytometry crossmatch assays.
• Fast, easy-to-use and column-free
• Up to 99% purity
• Isolated cells are untouched
• Compatible with downstream HLA assays
  • EasySep™ HLA B Cell Enrichment Kit (Catalog #19054HLA)
    • EasySep™ HLA B Cell Enrichment Cocktail, 1 mL
    • EasySep™ D Magnetic Particles, 2 x 1 mL
  • RoboSep™ Human B Cell Enrichment Kit with Filter Tips (Catalog #19054RF)
    • EasySep™ HLA B Cell Enrichment Cocktail, 1 mL
    • EasySep™ D Magnetic Particles, 2 x 1 mL
    • RoboSep™ Buffer (Catalog #20104)
    • RoboSep™ Filter Tips (Catalog #20125)
Magnet Compatibility:
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• RoboSep™-S (Catalog #21000)
Cell Isolation Kits
Cell Type:
B Cells
Sample Source:
Selection Method:
Cell Isolation
EasySep; RoboSep
Area of Interest:
Chimerism; HLA; Immunology

Scientific Resources

Educational Materials


Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.
Read More

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


FACS Histogram Results with EasySep™ HLA B Cell Enrichment Kit

Figure 1. FACS Histogram Results with EasySep™ HLA B Cell Enrichment Kit

Starting with frozen mononuclear cells, the CD19+ cell content of the enriched fraction typically ranges from 95 - 99%.


Transplantation proceedings 2013

Modified flow cytometry crossmatch detecting alloantibody-related cytotoxicity as a way to distinguish lytic antibodies from harmless in allosensitised kidney recipients.

Zieliʼn et al.


The serological complement-dependent cytotoxicity crossmatch (CDC-XM) permits routine identification of anti-donor alloantibodies in the sera of allotransplant recipients. However, in a small group of recipients, antibodies below the threshold of detection may still be responsible for hyperacute rejection. For the same reason, approximately 20% of recipients develop acute rejection episodes. The flow cytometry crossmatch (FCXM) was designed to address these problems, but because of the presence of clinically insignificant antibodies (linked, non-lytic), the FCXM appears to be too sensitive yielding false-positive results. We compared FCXM with its modified version assessing cell viability (cytolytic flow cytometry crossmatch; cFCXM) using sera from previously sensitised kidney recipients. The presence of alloantibodies was detected using the Luminex platform. The cFCXM proved to be of greater sensitivity than CDC-XM, which was additionally confirmed with bead-based Luminex techniques. The cFCXM was also superior to FCXM because it distinguished lytic from non-lytic antibodies. The cFCXM was superior to assess donor specificity, sensitivity, and detection of clinically relevant lytic antibodies.