EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion

Immunomagnetic negative selection kit
Catalog #
19356_C
Immunomagnetic negative selection kit
Request Pricing
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more
Required Products
  1. EasySep™ Magnet
    EasySep™ Magnet

    Magnet for column-free immunomagnetic separation

  2. RoboSep™ Buffer 2
    RoboSep™ Buffer 2

    Cell separation buffer

Overview

The EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion is designed to isolate hematopoietic progenitor cells from fresh or previously frozen cord blood and other cell preparations that contain large numbers of platelets by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes recognizing CD2, CD3, CD11b, CD11c, CD14, CD16, CD19, CD24, CD56, CD61, CD66b, glycophorin A and dextran-coated magnetic particles. The labeled cells are separated using an EasySep™ magnet without the use of columns. Desired cells are poured off into a new tube.
Advantages
• Fast, easy-to-use and column-free
• Up to 75% purity
• Isolated cells are untouched
Components
  • EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion (Catalog #19356)
    • EasySep™ Human Progenitor Cell Enrichment Cocktail with Platelet Depletion, 1 mL
    • EasySep™ Magnetic Particles, 2 x 1 mL
  • RoboSep™ Human Progenitor Enrichment with Platelet Depletion (Catalog #19356RF)
    • EasySep™ Human Progenitor Cell Enrichment Cocktail with Platelet Depletion, 1 mL
    • EasySep™ Magnetic Particles, 2 x 1 mL
    • RoboSep™ Buffer (Catalog #20104)
    • RoboSep™ Filter Tips (Catalog #20125)
Magnet Compatibility
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• RoboSep™-S (Catalog #21000)
Subtype
Cell Isolation Kits
Cell Type
Hematopoietic Stem and Progenitor Cells
Species
Human
Sample Source
Cord Blood, PBMC
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology, Stem Cell Biology

Scientific Resources

Product Documentation

Document Type Product Name Catalog # Lot # Language
Document Type
Product Information Sheet
Product Name
EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion
Catalog #
19356
Lot #
All
Language
English
Document Type
Product Information Sheet
Product Name
RoboSep™ Human Progenitor Enrichment with Platelet Depletion
Catalog #
19356RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Product Name
EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion
Catalog #
19356
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Product Name
EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion
Catalog #
19356
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Product Name
RoboSep™ Human Progenitor Enrichment with Platelet Depletion
Catalog #
19356RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Product Name
RoboSep™ Human Progenitor Enrichment with Platelet Depletion
Catalog #
19356RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Product Name
RoboSep™ Human Progenitor Enrichment with Platelet Depletion
Catalog #
19356RF
Lot #
All
Language
English

Educational Materials(6)

Brochure
Hematopoietic Stem and Progenitor Cells - Products for Your Research
Brochure
EasySep™ Cell Separation Technology
Wallchart
Human Immune Cytokines
Wallchart
Frequencies of Cell Types in Human Peripheral Blood
Video
1:13
Isolate Cells with a Simple Pour-Off: EasySep™ Cell Separation Technology
Video
1:57
How EasySep™ Magnetic Cell Separation Technology Works: Fast and Easy Cell Isolation

Frequently Asked Question

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.
Read More

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Starting with Nucleated Cells, the CD34+ Cell Content of the Enriched Fraction Typically Ranges from 50 - 75% Depending on the Quality of the Start Sample

Figure 1. Typical EasySep™ Human Progenitor Cell Enrichment Kit with Platelet Depletion Profile

Starting with nucleated cells, the CD34+ cell content of the enriched fraction typically ranges from 50 - 75%, depending on the quality of the start sample. Note: CD34+ enrichment is dependent on the frequency of CD34+ cells in the start sample, which is variable between cord blood samples. Use of poor quality cord blood or frozen samples may result in lower CD34+ cell content of the enriched fraction.

Publications (2)

Blood 2020 jun Activation of the receptor tyrosine kinase, RET, improves long-term hematopoietic stem cell outgrowth and potency. W. Grey et al.

Abstract

Expansion of Human Hematopoietic Stem Cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche, but how to apply this to HSC maintenance and expansion is yet to be explored. We demonstrate a role for the GFL receptor, RET, at the cell surface of HSCs, in mediating sustained cellular growth, resistance to stress and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/co-receptor complex, GDNF/GFRa1, show improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we demonstrate that RET drives a multi-faceted intracellular signalling pathway, including key signalling intermediates AKT, ERK1/2, NFkB and p53, responsible for a wide range of cellular and genetic responses which improve cell growth and survival under culture conditions.
Oncogene 2019 jan Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response. A. Gold et al.

Abstract

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.
View All Publications

Contact STEMCELL Technologies

Our Customer Service, Sales, and Product and Scientific Support departments in North America are available between 6 am and 5 pm Pacific Time (9 am and 8 pm Eastern Time). One of our representatives will be happy to help you by telephone or email. Please complete the form to contact us by email. A representative will get back to you shortly.
  •  

StemCell Technologies Inc. and affiliates ("STEMCELL Technologies") does not share your email address with third parties. StemCell Technologies Inc. will use your email address to confirm your identity and send you newsletters, transaction-related emails, promotional and customer service emails in accordance with our privacy policy. You can change your email preferences at any time.