EasySep™ Mouse B Cell Isolation Kit

15-Minute cell isolation kit using immunomagnetic negative selection

More Views

From: 605 USD

Options

* Required Fields

Catalog # (Select a product)
15-Minute cell isolation kit using immunomagnetic negative selection
From: 605 USD

Required Products

Overview

The EasySep™ Mouse B Cell Isolation Kit is designed to isolate B cells from single-cell suspensions of splenocytes or other tissues by negative selection. Unwanted cells are targeted for removal with biotinylated antibodies directed against non-B cells and streptavidin-coated magnetic particles (RapidSpheres™ ). Labeled cells are separated using and EasySep™ magnet without the use of columns. Desired cells are poured off into a new tube.

For isolation of B cells expressing CD11b or CD43, we recommend using the EasySep™ Mouse Pan-B Cell Isolation kit (Catalog #19844).

This product replaces the EasySep™ Mouse B Cell Enrichment Kit (Catalog #19754) for even faster cell isolations.
Advantages:
• Fast and easy-to-use
• Up to 95% purity
• No columns required
• Untouched, viable cells
Components:
  • EasySep™ Mouse B Cell Isolation Kit (Catalog #19854)
    • EasySep™ Mouse B Cell Isolation Cocktail, 0.5 mL
    • EasySep™ Streptavidin RapidSpheres™ 50001, 1 mL
    • Normal Rat Serum, 2 mL
  • RoboSep™ Mouse B Cell Isolation Kit (Catalog #19854RF)
    • EasySep™ Mouse B Cell Isolation Cocktail, 0.5 mL
    • EasySep™ Streptavidin RapidSpheres™ 50001, 1 mL
    • Normal Rat Serum, 2 mL
    • RoboSep™ Buffer (Catalog #20104)
    • RoboSep™ Filter Tips (Catalog #20125)
Magnet Compatibility:
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• EasyPlate™ EasySep™ Magnet (Catalog 18102)
• EasyEights™ EasySep™ Magnet (Catalog #18103)
• RoboSep™-S (Catalog #21000)
Subtype:
Cell Isolation Kits
Cell Type:
B Cells
Species:
Mouse
Sample Source:
Other; Spleen
Selection Method:
Negative
Application:
Cell Isolation
Brand:
EasySep; RoboSep
Area of Interest:
Immunology

Scientific Resources

Frequently Asked Questions

Can EasySep™ Streptavidin RapidSpheres™ be used for either positive or negative selection?

Currently, EasySep™ Streptavidin RapidSphere™ kits are only available for negative selection and work by targeting and removing unwanted cells.

How does the separation work?

Streptavidin RapidSphere™ magnetic particles are crosslinked to unwanted cells using biotinylated antibodies. When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a new tube.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ Streptavidin RapidSphere™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Are cells isolated using EasySep™ RapidSphere™ products FACS-compatible?

Yes. Desired cells are unlabeled and ready to use in downstream applications, such as FACS analysis.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.
Read More

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Typical EasySep™ Mouse B Cell Isolation Profile

Figure 1. Typical EasySep™ Mouse B Cell Isolation Profile

Starting with mouse splenocytes, the B cell content of the isolated fraction typically ranges from 94 - 98%.

Publications

(18)
Journal of immunology (Baltimore, Md. : 1950) 2018 OCT

TRAF2 Deficiency in B Cells Impairs CD40-Induced Isotype Switching That Can Be Rescued by Restoring NF-$\kappa$B1 Activation.

R. A. Woolaver et al.

Abstract

Effective humoral immunity requires class switch recombination (CSR) catalyzed by activation-induced cytidine deaminase (AID). In response to T cell-dependent (TD) Ags, CSR can be induced by CD40 signaling in B cells. TNFR-associated factors 2 and 3 (TRAF2/TRAF3) function as adaptors of the CD40 signaling pathway. B cell-intrinsic TRAF2 or TRAF3 (B-TRAF2 or B-TRAF3) knockout mice were previously reported to have indistinguishable phenotypes in gene expression, B cell survival and development, and enlarged peripheral lymphoid organs. However, it remains unknown whether deficiency of B-TRAF2 or B-TRAF3 differentially affects TD humoral immune responses and CD40-induced CSR. In this article, we show that B-TRAF2 is essential for optimal isotype switching induced by in vivo TD Ag immunization or by engaging CD40 in vitro. Our data clarify the controversial role of B-TRAF3 and confirm its dispensability in CD40-induced CSR. Mechanistically, CD40-induced AID expression was markedly impaired by B-TRAF2, but not B-TRAF3, deficiency. Moreover, B-TRAF2 deficiency causes defective activation of the NF-$\kappa$B1 complex in a CD40-autonomous manner, and restoring CD40-induced NF-$\kappa$B1 activation in TRAF2-deficient B cells rescues AID expression and CSR. We conclude that TRAF2 is essential but TRAF3 is dispensable for TD humoral immunity and CD40-induced CSR. Our studies provide significant biological bases for optimizing treatment of B cell-associated immune disorders by targeting CD40 signaling.
Cell metabolism 2018 JAN

Let-7 Suppresses B Cell Activation through Restricting the Availability of Necessary Nutrients.

Jiang S et al.

Abstract

The control of uptake and utilization of necessary extracellular nutrients-glucose and glutamine-is an important aspect of B cell activation. Let-7 is a family of microRNAs known to be involved in metabolic control. Here, we employed several engineered mouse models, including B cell-specific overexpression of Lin28a or the let-7a-1/let-7d/let-7f-1 cluster (let-7adf) and knockout of individual let-7 clusters to show that let-7adf specifically inhibits T cell-independent (TI) antigen-induced immunoglobulin (Ig)M antibody production. Both overexpression and deletion of let-7 in this cluster leads to altered TI-IgM production. Mechanistically, let-7adf suppresses the acquisition and utilization of key nutrients, including glucose and glutamine, through directly targeting hexokinase 2 (Hk2) and by repressing a glutamine transporter Slc1a5 and a key degradation enzyme, glutaminase (Gls), a mechanism mediated by regulation of c-Myc. Our results suggest a novel role of let-7adf as a metabolic brake" on B cell antibody production."
JCI insight 2018 JAN

Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice.

Tan Q et al.

Abstract

B cells play an important role in type 1 diabetes (T1D) development. However, the role of B cell activation-induced cytidine deaminase (AID) in diabetes development is not clear. We hypothesized that AID is important in the immunopathogenesis of T1D. To test this hypothesis, we generated AID-deficient (AID-/-) NOD mice. We found that AID-/-NOD mice developed accelerated T1D, with worse insulitis and high levels of anti-insulin autoantibody in the circulation. Interestingly, neither maternal IgG transferred through placenta, nor IgA transferred through milk affected the accelerated diabetes development. AID-/-NOD mice showed increased activation and proliferation of B and T cells. We found enhanced T-B cell interactions in AID-/-NOD mice, with increased T-bet and IFN-γ expression in CD4+ T cells in the presence of AID-/- B cells. Moreover, excessive lymphoid expansion was observed in AID-/-NOD mice. Importantly, antigen-specific BDC2.5 CD4+ T cells caused more rapid onset of diabetes when cotransferred with AID-/- B cells than when cotransferred with AID+/+ B cells. Thus, our study provides insights into the role of AID in T1D. Our data also suggest that AID is a negative regulator of immune tolerance and ablation of AID can lead to exacerbated islet autoimmunity and accelerated T1D development.
Scientific reports 2016 NOV

Kin17 facilitates multiple double-strand break repair pathways that govern B cell class switching.

Le MX et al.

Abstract

Class switch recombination (CSR) in B cells requires the timely repair of DNA double-stranded breaks (DSBs) that result from lesions produced by activation-induced cytidine deaminase (AID). Through a genome-wide RNAi screen, we identified Kin17 as a gene potentially involved in the maintenance of CSR in murine B cells. In this study, we confirm a critical role for Kin17 in CSR independent of AID activity. Furthermore, we make evident that DSBs generated by AID or ionizing radiation require Kin17 for efficient repair and resolution. Our report shows that reduced Kin17 results in an elevated deletion frequency following AID mutational activity in the switch region. In addition, deficiency in Kin17 affects the functionality of multiple DSB repair pathways, namely homologous recombination, non-homologous end-joining, and alternative end-joining. This report demonstrates the importance of Kin17 as a critical factor that acts prior to the repair phase of DSB repair and is of bona fide importance for CSR.
The EMBO journal 2016 NOV

Aryl hydrocarbon receptor is required for optimal B-cell proliferation.

Villa M et al.

Abstract

The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr(-/-)) B cells proliferate less than AhR-sufficient (Ahr(+/+)) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr(-/-) B cells are outcompeted by Ahr(+/+) cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency.
STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.