EasySep™ Human B Cell Enrichment Kit

Immunomagnetic negative selection kit

More Views

From: 812 USD


* Required Fields

Catalog # (Select a product)
Immunomagnetic negative selection kit
From: 812 USD

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

Required Products


The EasySep™ Human B Cell Enrichment Kit is designed to isolate B cells from fresh or previously frozen peripheral blood mononuclear cells by negative selection. Unwanted cells are targeted for removal with Tetrameric Antibody Complexes recognizing non-B cells and dextran-coated magnetic particles. The labeled cells are separated using an EasySep™ magnet without the use of columns. Desired cells are poured off into a new tube.

For even faster cell isolations, we recommend the new EasySep™ Human B Cell Isolation Kit (17954), which isolates cells in just 9 minutes.
• Fast, easy-to-use and column-free
• Up to 99% purity
• Untouched, viable cells
  • EasySep™ Human B Cell Enrichment Kit (Catalog #19054)
    • EasySep™ Human B Cell Enrichment Cocktail, 1 mL
    • EasySep™ D Magnetic Particles, 2 x 1 mL
  • RoboSep™ Human B Cell Enrichment Kit with Filter Tips (Catalog #19054RF)
    • EasySep™ Human B Cell Enrichment Cocktail, 1 mL
    • EasySep™ D Magnetic Particles, 2 x 1 mL
    • RoboSep™ Buffer (Catalog #20104)
    • RoboSep™ Filter Tips (Catalog #20125)
Magnet Compatibility:
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• Easy 50 EasySep™ Magnet (Catalog #18002)
• EasyPlate™ EasySep™ Magnet (Catalog 18102)
• EasyEights™ EasySep™ Magnet (Catalog #18103)
• RoboSep™-S (Catalog #21000)
Cell Isolation Kits
Cell Type:
B Cells
Sample Source:
Leukapheresis; PBMC
Selection Method:
Cell Isolation
EasySep; RoboSep
Area of Interest:

Scientific Resources

Educational Materials


Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.
Read More

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


FACS Histogram Results With EasySep™ Human B Cell Enrichment Kit

Figure 1. FACS Histogram Results With EasySep™ Human B Cell Enrichment Kit

Starting with frozen mononuclear cells, the CD19+ cell content of the enriched fraction typically ranges from 95% - 99%.


Cell reports 2020 oct

Interferon-$\lambda$ Enhances the Differentiation of Naive B Cells into Plasmablasts via the mTORC1 Pathway.

M. Syedbasha et al.


Type III interferon (interferon lambda [IFN-$\lambda$]) is known to be a potential immune modulator, but the mechanisms behind its immune-modulatory functions and its impact on plasmablast differentiation in humans remain unknown. Human B cells and their subtypes directly respond to IFN-$\lambda$. Using B cell transcriptome profiling, we investigate the immune-modulatory role of IFN-$\lambda$ in B cells. We find that IFN-$\lambda$-induced gene expression in B cells is steady, prolonged, and importantly, cell type specific. Furthermore, IFN-$\lambda$ enhances the mTORC1 (mammalian/mechanistic target of rapamycin complex 1) pathway in B cells activated by the B cell receptor (BCR/anti-IgM). Engagement of mTORC1 by BCR and IFN-$\lambda$ induces cell-cycle progress in B cells. Subsequently, IFN-$\lambda$ boosts the differentiation of naive B cells into plasmablasts upon activation, and the cells gain effector functions such as cytokine release (IL-6 and IL-10) and antibody production. Our study shows how IFN-$\lambda$ systematically boosts the differentiation of naive B cells into plasmablasts by enhancing the mTORC1 pathway and cell-cycle progression in activated B cells.
Cell 2020

Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells.

Y. Cao et al.


The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 {\AA} cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.
Cell 2019 jun

Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies.

D. G. W. Alanine et al.


The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.
Journal of immunology (Baltimore, Md. : 1950) 2018 NOV

Nonredundant Roles of IL-21 and IL-4 in the Phased Initiation of Germinal Center B Cells and Subsequent Self-Renewal Transitions.

D. G. Gonzalez et al.


We examined the unique contributions of the cytokines IL-21 and IL-4 on germinal center (GC) B cell initiation and subsequent maturation in a murine model system. Similar to other reports, we found T follicular helper cell expression of IL-21 begins prior to T follicular helper cell migration into the B cell follicle and precedes that of IL-4. Consistent with this timing, IL-21 signaling has a greater influence on the perifollicular pre-GC B cell transition to the intrafollicular stage. Notably, Bcl6hi B cells can form in the combined absence of IL-21R- and STAT6-derived signals; however, these nascent GC B cells cease to proliferate and are more prone to apoptosis. When B cells lack either IL-21R or STAT6, aberrant GCs form atypical centroblasts and centrocytes that differ in their phenotypic maturation and costimulatory molecule expression. Thus, IL-4 and IL-21 play nonredundant roles in the phased progression of GC B cell development that can initiate in the combined absence of these cytokine signals.
Science immunology 2018 NOV

Intrinsic properties of human germinal center B cells set antigen affinity thresholds.

K. Kwak et al.


Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with na{\{i}}ve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity- and Tfh cell-dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of na{\"{i}}ve B cells. Thus intrinsic properties of human GC B cells set thresholds for affinity selection."""