EasySep™ Human Monocyte Isolation Kit

12.5-Minute cell isolation kit using immunomagnetic negative selection

New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more

EasySep™ Human Monocyte Isolation Kit

12.5-Minute cell isolation kit using immunomagnetic negative selection

From: 988 USD
Catalog #
(Select a product)
12.5-Minute cell isolation kit using immunomagnetic negative selection
Add to Wish List

Product Advantages


  • Fast, easy-to-use and column-free

  • Up to 94% purity with high recovery

  • Untouched, viable cells

What's Included

  • EasySep™ Human Monocyte Isolation Kit (Catalog #19359)
    • EasySep™ Human Monocyte Isolation Cocktail, 1 mL
    • EasySep™ Human Platelet Removal Cocktail, 1 mL
    • EasySep™ D Magnetic Particles for Human Monocytes, 1 mL
  • EasySep™ Human Monocyte Isolation Kit (Catalog #100-0697)
    • EasySep™ Human Monocyte Isolation Cocktail, 1 x 10 mL
    • EasySep™ D Magnetic Particles, 1 x 10 mL
  • RoboSep™ Human Monocyte Isolation Kit (Catalog #19359RF)
    • EasySep™ Human Monocyte Isolation Cocktail, 1 mL
    • EasySep™ Human Platelet Removal Cocktail, 1 mL
    • EasySep™ D Magnetic Particles for Human Monocytes, 1 mL
    • RoboSep™ Buffer (Catalog #20104)
    • RoboSep™ Filter Tips (Catalog #20125)

What Our Scientist Says

Isolating immune cells can be time consuming, but it doesn't have to be. That's why we developed a wide variety of EasySep™ kits, including this 12.5-minute monocyte isolation kit.

Grace PoonScientist
Grace Poon, Scientist

Overview

The EasySep™ Human Monocyte Isolation Kit is designed to isolate CD14+CD16- monocytes from fresh or previously frozen peripheral blood mononuclear cells or washed leukapheresis samples by immunomagnetic negative selection. The EasySep™ procedure involves labeling unwanted cells and platelets with antibody complexes and magnetic particles. The magnetically labelled cells are separated from the untouched desired cells by using an EasySep™ magnet and simply pouring or pipetting the desired cells into a new tube.

This product can be used in place of the EasySep™ Human Monocyte Enrichment Kit (Catalog #19059) for even faster cell isolations with reduced platelet contamination.
Magnet Compatibility
• EasySep™ Magnet (Catalog #18000)
• “The Big Easy” EasySep™ Magnet (Catalog #18001)
• Easy 50 EasySep™ Magnet (Catalog #18002)
• EasyPlate™ EasySep™ Magnet (Catalog #18102)
• EasyEights™ EasySep™ Magnet (Catalog #18103)
• RoboSep™ (Catalog #21000)
• Easy 250 EasySep™ Magnet (Catalog #100-0821)
Subtype
Cell Isolation Kits
Cell Type
Monocytes
Species
Human
Sample Source
PBMC
Selection Method
Negative
Application
Cell Isolation
Brand
EasySep, RoboSep
Area of Interest
Immunology

Data Figures

Typical monocyte separation using EasySep™ Human Monocyte Isolation Kit

Figure 1. Typical EasySep™ Human Monocyte Isolation Profile

Starting with PBMCs prepared from human whole peripheral blood, the monocyte cell content (CD14+CD45+) of the isolated fraction obtained without (middle plots) or with EasySep™ Human Platelet Removal Cocktail (bottom plots) is typically 89.7 ± 3.4% and 87.3 ± 4.5%, respectively (gated on CD45, mean ± SD for the purple EasySep™ Magnet). In the above example, the purities of the start and final isolated fractions obtained without (middle plots) or with the EasySep™ Human Platelet Removal Cocktail (bottom plots) are 17.6%, 91.7% and 88.4%, respectively (gated on CD45) and 12.2%, 39.8% and 85.0% (not gated on CD45).

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
100-0697
Lot #
All
Language
English
Catalog #
19359RF
Lot #
All
Language
English
Catalog #
19359
Lot #
All
Language
English
Document Type
Safety Data Sheet
Catalog #
100-0697
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Catalog #
19359RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Catalog #
19359RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Catalog #
19359RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 4
Catalog #
19359RF
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Catalog #
19359
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Catalog #
19359
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Catalog #
19359
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Frequently Asked Questions

Can EasySep™ be used for either positive or negative selection?

Yes. The EasySep™ kits use either a negative selection approach by targeting and removing unwanted cells or a positive selection approach targeting desired cells. Depletion kits are also available for the removal of cells with a specific undesired marker (e.g. GlyA).

How does the separation work?

Magnetic particles are crosslinked to cells using Tetrameric Antibody Complexes (TAC). When placed in the EasySep™ Magnet, labeled cells migrate to the wall of the tube. The unlabeled cells are then poured off into a separate fraction.

Which columns do I use?

The EasySep™ procedure is column-free. That's right - no columns!

How can I analyze the purity of my enriched sample?

The Product Information Sheet provided with each EasySep™ kit contains detailed staining information.

Can EasySep™ separations be automated?

Yes. RoboSep™, the fully automated cell separator, automates all EasySep™ labeling and cell separation steps.

Can EasySep™ be used to isolate rare cells?

Yes. We recommend a cell concentration of 2x108 cells/mL and a minimum working volume of 100 µL. Samples containing 2x107 cells or fewer should be suspended in 100 µL of buffer.

Are the EasySep™ magnetic particles FACS-compatible?

Yes, the EasySep™ particles are flow cytometry-compatible, as they are very uniform in size and about 5000X smaller than other commercially available magnetic beads used with column-free systems.

Can the EasySep™ magnetic particles be removed after enrichment?

No, but due to the small size of these particles, they will not interfere with downstream applications.

Can I alter the separation time in the magnet?

Yes; however, this may impact the kit's performance. The provided EasySep™ protocols have already been optimized to balance purity, recovery and time spent on the isolation.

For positive selection, can I perform more than 3 separations to increase purity?

Yes, the purity of targeted cells will increase with additional rounds of separations; however, cell recovery will decrease.

How does the binding of the EasySep™ magnetic particle affect the cells? is the function of positively selected cells altered by the bound particles?

Hundreds of publications have used cells selected with EasySep™ positive selection kits for functional studies. Our in-house experiments also confirm that selected cells are not functionally altered by the EasySep™ magnetic particles.

If particle binding is a key concern, we offer two options for negative selection. The EasySep™ negative selection kits can isolate untouched cells with comparable purities, while RosetteSep™ can isolate untouched cells directly from whole blood without using particles or magnets.

Publications (14)

Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. S. J. Wang et al. Science advances 2020 may

Abstract

Interpreting how multicellular interactions in the tumor affect resistance pathways to BRAF and MEK1/2 MAPK inhibitors (MAPKi) remains a challenge. To investigate this, we profiled global ligand-receptor interactions among tumor and stromal/immune cells from biopsies of MAPK-driven disease. MAPKi increased tumor-associated macrophages (TAMs) in some patients, which correlated with poor clinical response, and MAPKi coamplified bidirectional tumor-TAM signaling via receptor tyrosine kinases (RTKs) including AXL, MERTK, and their ligand GAS6. In xenograft tumors, intravital microscopy simultaneously monitored in situ single-cell activities of multiple kinases downstream of RTKs, revealing MAPKi increased TAMs and enhanced bypass signaling in TAM-proximal tumor cells. As a proof-of-principle strategy to block this signaling, we developed a multi-RTK kinase inhibitor nanoformulation that accumulated in TAMs and delayed disease progression. Thus, bypass signaling can reciprocally amplify across nearby cell types, offering new opportunities for therapeutic design.
Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. S. Figueroa-Lozano et al. Frontiers in immunology 2020

Abstract

Toll-like receptor 8 (TLR-8) plays a role in the pathogenesis of autoimmune disorders and associated gastrointestinal symptoms that reduce quality of life of patients. Dietary interventions are becoming more accepted as mean to manage onset, progression, and treatment of a broad spectrum of inflammatory conditions. In this study, we assessed the impact of N-glycans derived from bovine lactoferrin (bLF) on the inhibition of TLR-8 activation. We investigated the effects of N-glycans in their native form, as well as in its partially demannosylated and partially desialylated form, on HEK293 cells expressing TLR-8, and in human monocyte-derived dendritic cells (MoDCs). We found that in HEK293 cells, N-glycans strongly inhibited the ssRNA40 induced TLR-8 activation but to a lesser extent the R848 induced TLR-8 activation. The impact was compared with a pharmaceutical agent, i.e., chloroquine (CQN), that is clinically applied to antagonize endosomal TLR- activation. Inhibitory effects of the N-glycans were not influenced by the partially demannosylated or partially desialylated N-glycans. As the difference in charge of the N-glycans did not influence the inhibition capacity of TLR-8, it is possible that the inhibition mediated by the N-glycans is a result of a direct interaction with the receptor rather than a result of pH changes in the endosome. The inhibition of TLR-8 in MoDCs resulted in a significant decrease of IL-6 when cells were treated with the unmodified (0.5-fold, p {\textless} 0.0001), partially demannosylated (0.3-fold, p {\textless} 0.0001) and partially desialylated (0.4-fold, p {\textless} 0.0001) N-glycans. Furthermore, the partially demannosylated and partially desialylated N-glycans showed stronger inhibition of IL-6 production compared with the native N-glycans. This provides evidence that glycan composition plays a role in the immunomodulatory activity of the isolated N-glycans from bLF on MoDCs. Compared to CQN, the N-glycans are specific inhibitors of TLR-8 activation and of IL-6 production in MoDCs. Our findings demonstrate that isolated N-glycans from bLF have attenuating effects on TLR-8 induced immune activation in HEK293 cells and human MoDCs. The inhibitory capacity of N-glycans isolated from bLF onTLR-8 activation may become a food-based strategy to manage autoimmune, infections or other inflammatory disorders.
Anti-CD105 Antibody Eliminates Tumor Microenvironment Cells and Enhances Anti-GD2 Antibody Immunotherapy of Neuroblastoma with Activated Natural Killer Cells. H.-W. Wu et al. Clinical cancer research : an official journal of the American Association for Cancer Research 2019 may

Abstract

Purpose: We determined whether elimination of CD105+ cells in the tumor microenvironment (TME) with anti-CD105 antibodies enhanced anti-disialoganglioside (GD2) antibody dinutuximab therapy of neuroblastoma when combined with activated natural killer (aNK) cells.Experimental Design: The effect of MSCs and monocytes on antibody-dependent cellular cytotoxicity (ADCC) mediated by dinutuximab with aNK cells against neuroblastoma cells was determined in vitro. ADCC with anti-CD105 mAb TRC105 and aNK cells against MSCs, monocytes, and endothelial cells, which express CD105, was evaluated. Anti-neuroblastoma activity in immunodeficient NSG mice of dinutuximab with aNK cells without or with anti-CD105 mAbs was determined using neuroblastoma cell lines and a patient-derived xenograft.Results: ADCC mediated by dinutuximab with aNK cells against neuroblastoma cells in vitro was suppressed by addition of MSCs and monocytes, and dinutuximab with aNK cells was less effective against neuroblastomas formed with coinjected MSCs and monocytes in NSG mice than against those formed by tumor cells alone. Anti-CD105 antibody TRC105 with aNK cells mediated ADCC against MSCs, monocytes, and endothelial cells. Neuroblastomas formed in NSG mice by two neuroblastoma cell lines or a patient-derived xenograft coinjected with MSCs and monocytes were most effectively treated with dinutuximab and aNK cells when anti-human (TRC105) and anti-mouse (M1043) CD105 antibodies were added, which depleted human MSCs and murine endothelial cells and macrophages from the TME.Conclusions: Immunotherapy of neuroblastoma with anti-GD2 antibody dinutuximab and aNK cells is suppressed by CD105+ cells in the TME, but suppression is overcome by adding anti-CD105 antibodies to eliminate CD105+ cells.
New look, same high quality and support! You may notice that your instrument or reagent packaging looks slightly different from images displayed on the website, or from previous orders. We are updating our look but rest assured, the products themselves and how you should use them have not changed. Learn more