MesenCult™ Adipogenic Differentiation Kit (Human)

Medium for the differentiation of human MSCs into adipocytes

More Views

MesenCult™ Adipogenic Differentiation Kit (Human)

Medium for the differentiation of human MSCs into adipocytes

1 Kit
Catalog #05412
221 USD


MesenCult™ Adipogenic Differentiation Medium (Human) is specifically formulated for the in vitro differentiation of human mesenchymal stromal cells (also known as mesenchymal stem cells or MSCs) into adipogenic lineage cells. This kit is suitable for the differentiation of MSCs derived from human bone marrow (BM), adipose tissue, umbilical cord, or pluripotent stem cells (PSCs) that have been previously culture-expanded in serum- and animal component-free medium (e.g. MesenCult™ ACF Plus Medium [Catalog #05445]), serum-containing medium (e.g. MesenCult™ Proliferation Kit [Catalog #05411]), or platelet lysate medium (e.g. MesenCult™-hPL Medium [Catalog #05439]).
• Robust and versatile human MSC differentiation to adipocytes
• Optimized for differentiation of bone marrow- and adipose tissue-derived human MSCs previously cultured in serum-containing or serum-free media, such as MesenCult™-ACF Plus Medium
• Compatible with human MSCs previously cultured in platelet lysate media
  • MesenCult™ MSC Basal Medium (Human), 225 mL
  • MesenCult™ 10X Adipogenic Differentiation Supplement (Human), 25 mL
  • MesenCult™ 500X Adipogenic Differentiation Supplement (Human), 0.5 mL
Specialized Media
Cell Type:
Adipocytes; Mesenchymal Stem and Progenitor Cells
Cell Culture; Differentiation
Area of Interest:
Stem Cell Biology

Scientific Resources

Educational Materials


Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Adipogenic Differentiation of Human Bone Marrow-Derived MSCs

Figure 1. Adipogenic Differentiation of Human Bone Marrow-Derived MSCs

Adipogenic differentiation of human bone marrow-derived MSCs using MesenCult™ Adipogenic Differentiation Medium (Human) or a competitor medium. Prior to differentiation, MSCs were cultured for 2 passages in either serum- and xeno-free media (MesenCult™-XF or a 10% platelet lysate-based formulation) or serum-containing medium (MesenCult™) before undergoing differentiation. Even though differentation results are donor dependent, MesenCult™ Adipogenic Differentiation Medium (Human) consistently performed as well as, or better than the competitor medium. This trend was consistent for MSCs previously cultured in MesenCult™-XF, 10% Platelet Lysate or MesenCult™ medium.


Clinical and experimental dental research 2020 may

Differential expression of drug resistance genes in CD146 positive dental pulp derived stem cells and CD146 negative fibroblasts.

M. S. Tavangar et al.


INTRODUCTION The stem cell portion of the dental pulp derived cultures (DPSCs) showed a higher resistance to cytotoxic effect of restorative dental materials compared to pulpal fibroblasts (DPFs). Here, we aimed to compare the expression of some drug resistant genes between these cells. METHODS AND MATERIALS To separate DPSCs from DPFs, we used magnetic cell sorting technique based on CD146 expression. To assess the stem cell properties, the positive and negative portions underwent colony forming assays and were induced to be differentiated into the adipocytes, osteoblasts, hepatocytes, and neural cells. Cell surface antigen panels were checked using immune fluorescence and flow-cytometry techniques. The mRNA expression of 14 ABC transporters including ABCA2, ABCB1, ABCB11, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5-2, ABCC5-4,ABCC5-13, ABCC6, ABCC10, ABCC11, and ABCG2 genes was assessed, using quantitative RT-PCR technique. RESULTS Only the CD146 positive portion could be differentiated into the desired fates, and they formed higher colonies (16.7 ± 3.32 vs. 1.7 ± 1.67, p {\textless} .001). The cell surface antigen panels were the same, except for CD146 and STRO-1 markers which were expressed only in the positive portion. Among the ABC transporter genes studied, the positive portion showed a higher expression (approximately two-fold) of ABCA2, ABCC5-13, and ABCC5-2 genes. CONCLUSION Dental pulp stem cells which can be separated from dental pulp fibroblasts based on CD146 expression, express higher levels of some drug resistance genes which probably accounts for their features of more resistance to cytotoxic effects of some dental materials. This needs to be more validated in future.
Science advances 2020 may

In situ repair abilities of human umbilical cord-derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion.

L. Wang et al.


Increasing occurrence of moderate to severe intrauterine adhesion (IUA) is seriously affecting the quality of human life. The aim of the study was to establish IUA models in nonhuman primates and to explore the dual repair effects of human umbilical cord-derived mesenchymal stem cells (huMSCs) loaded on autocrosslinked hyaluronic acid gel (HA-GEL) on endometrial damage and adhesion. Here, we recorded the menstrual cycle data in detail with uterine cavities observed and endometrial tissues detected after intervention, and the thicker endometria, decreased amount of fibrotic formation, increased number of endometrium glands, etc., suggested that both HA-GEL and huMSC/HA-GEL complexes could partially repair IUA caused by mechanical injury, but huMSC/HA-GEL complex transplantation had notable dual repair effects: a reliable antiadhesion property and the promotion of endometrial regeneration.
Journal of cellular and molecular medicine 2020 mar

Intravenous administration of iPS-MSCSPIONs mobilized into CKD parenchyma and effectively preserved residual renal function in CKD rat.

J.-J. Sheu et al.


This study traced intravenously administered induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSC) and assessed the impact of iPSC-MSC on preserving renal function in SD rat after 5/6 nephrectomy. The results of in vitro study showed that FeraTrack™Direct contrast particles (ie intracellular magnetic labelling) in the iPSC-MSC (ie iPS-MSCSPIONs ) were clearly identified by Prussian blue stain. Adult-male SD rats (n = 40) were categorized into group 1 (SC), group 2 [SC + iPS-MSCSPIONs (1.0 × 106 cells)/intravenous administration post-day-14 CKD procedure], group 3 (CKD), group 4 [CKD + iPS-MSCSPIONs (0.5 × 106 cells)] and group 5 [CKD + iPS-MSCSPIONs (1.0 × 106 cells)]. By day-15 after CKD induction, abdominal MRI demonstrated that iPS-MSCSPIONs were only in the CKD parenchyma of groups 4 and 5. By day 60, the creatinine level/ratio of urine protein to urine creatinine/kidney injury score (by haematoxylin and eosin stain)/fibrotic area (Masson's trichrome stain)/IF microscopic finding of kidney injury molecule-1 expression was lowest in groups 1 and 2, highest in group 3, and significantly higher in group 4 than in group 5, whereas IF microscopic findings of podocyte components (ZO-1/synaptopodin) and protein levels of anti-apoptosis ((Bad/Bcl-xL/Bcl-2) exhibited an opposite pattern to creatinine level among the five groups (all P {\textless} .0001). The protein expressions of cell-proliferation signals (PI3K/p-Akt/m-TOR, p-ERK1/2, FOXO1/GSK3$\beta$/p90RSK), apoptotic/DNA-damage (Bax/caspases8-10/cytosolic-mitochondria) and inflammatory (TNF-$\alpha$/TNFR1/TRAF2/NF-$\kappa$B) biomarkers displayed an identical pattern to creatinine level among the five groups (all P {\textless} .0001). The iPS-MSCSPIONs that were identified only in CKD parenchyma effectively protected the kidney against CKD injury.
Stem cells and development 2020 jul

Human Umbilical Cord Mesenchymal Stem Cells Attenuate Abdominal Aortic Aneurysm Progression in Sprague-Dawley Rats: Implication of Vascular Smooth Muscle Cell Phenotypic Modulation.

H. Wen et al.


Abdominal aortic aneurysm (AAA) is life-threatening, for which efficient nonsurgical treatment strategy has not been available so far. Several previous studies investigating the therapeutic effect of mesenchymal stem cells (MSCs) in AAA indicated that MSCs could inhibit aneurysmal inflammatory responses and extracellular matrix destruction, and suppress aneurysm occurrence and expansion. Vascular smooth muscle cell (VSMC) phenotypic plasticity is reported to be predisposed in AAA initiation and progression. However, little is known about the effect of MSCs on VSMC phenotypic modulation in AAA. In this study, we investigate the therapeutic efficacy of umbilical cord mesenchymal stem cells (UC-MSCs) in elastase-induced AAA model and evaluate the effect of UC-MSC on VSMC phenotypic regulation. We demonstrate that the intravenous injection of UC-MSC attenuates elastase-induced aneurysmal expansion, reduces elastin degradation and fragmentation, inhibits MMPs and TNF-$\alpha$ expression, and preserves and/or restores VSMC contractile phenotype in AAA. Taken together, these results highlight the therapeutic and VSMC phenotypic modulation effects of UC-MSC in AAA progression, which further indicates the potential of applying UC-MSC as an alternative treatment candidate for AAA.
Stem cell research {\&} therapy 2020

Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia.

J. Huo et al.


BACKGROUND Longitudinal studies have verified the pivotal role of mesenchymal stem/stromal cells (MSCs) in the bone marrow microenvironment for hematopoiesis and coordinate contribution to leukemia pathogenesis. However, the precise characteristics and alternation of MSCs during acquired aplastic anemia (AA) remain obscure. METHODS In this study, we originally collected samples from both healthy donors (HD) and AA patients to dissect the hematological changes. To systematically evaluate the biological defects of AA-derived MSCs (AA-MSCs), we analyzed alterations in cellular morphology, immunophenotype, multi-lineage differentiation, cell migration, cellular apoptosis, and chromosome karyocyte, together with the immunosuppressive effect on the activation and differentiation of lymphocytes. With the aid of whole genome sequencing and bioinformatic analysis, we try to compare the differences between AA-MSCs and HD-derived MSCs (HD-MSCs) upon the molecular genetics, especially the immune-associated gene expression pattern. In addition, the efficacy of umbilical cord-derived MSC (UC-MSC) transplantation on AA mice was evaluated by utilizing survivorship curve, histologic sections, and blood cell analyses. RESULTS In coincidence with the current reports, AA patients showed abnormal subsets of lymphocytes and higher contents of proinflammatory cytokines. Although with similar immunophenotype and chromosome karyotype to HD-MSCs, AA-MSCs showed distinguishable morphology and multiple distinct characteristics including genetic properties. In addition, the immunosuppressive effect on lymphocytes was significantly impaired in AA-MSCs. What is more, the cardinal symptoms of AA mice were largely rescued by systemic transplantation of UC-MSCs. CONCLUSIONS Herein, we systematically investigated the signatures and efficacy of MSCs to dissect the alterations occurred in AA both at the cellular and molecular levels. Different from HD-MSCs, AA-MSCs exhibited multifaceted defects in biological characteristics and alterative molecular genetics in the whole genome. Our findings have provided systematic and overwhelming new evidence for the defects of AA-MSCs, together with effectiveness assessments of UC-MSCs on AA as well.