Human Bone Marrow Stromal Cells, Frozen

Primary human cells, frozen
Human Bone Marrow Stromal Cells Derived in ACF Medium, Frozen

Primary human cells, frozen

7.5 x 10^5 cells
  • Please select one of the preferences above when ordering multiple quantities

    Please indicate any specifications (e.g. sex, age range, BMI range, ethnicity, blood type, smoker status, CMV, HLA, etc.) in the comment box below. An additional surcharge will apply to requests for CMV, HLA, or other specifications requiring new donor recruitment. Please note that highly specific or multiple specifications may affect the delivery time.

Catalog # 70071
940 USD
Please note that you may experience longer than usual wait times for order fulfillment for this product. Please contact us for expected delivery estimates.


Human primary stromal cells (mesenchymal stem and progenitor cells) are produced by expanding bone marrow mononuclear cells (MNCs) in culture and cryopreserved following the first passage in culture.
• For Human Bone Marrow Stromal Cells (Catalog #70022) MNCs were cultured in MesenCult™ Proliferation Kit (Human; Catalog #05411)
• For Human Bone Marrow Stromal Cells Derived in ACF Medium (Catalog #70071) MNCs were cultured in MesenCult™-ACF Culture Kit (Catalog #05449)

Cells were obtained using Institutional Review Board (IRB)-approved consent forms and protocols.

Certain products are only available in select territories. Please contact your local Sales representative or Product & Scientific Support at for further information.

Browse our Frequently Asked Questions (FAQs) on Primary Cells.
• CryoStor® CS10
Cell Type
Mesenchymal Stem and Progenitor Cells
Cell and Tissue Source
Bone Marrow
Donor Status
≥ 90% CD73+, ≥ 90% CD90+, ≥ 90% CD105+, ≤ 5% CD14+, ≤ 5% CD34+, and ≤ 5% CD45+ by flow cytometry

Scientific Resources

Product Documentation

Document Type Product Name Catalog # Lot # Language
Document Type
Product Information Sheet
Product Name
Human Bone Marrow Stromal Cells Derived in ACF Medium, Frozen
Catalog #
Lot #

Educational Materials (6)

MesenCult™-ACF Chondrogenic Differentiation Medium
Human Bone Marrow Cells Product Overview Flyer
The Identity and Properties of Mesenchymal Stem Cells
SnapShot: Adipocyte Life Cycle
How to Thaw Frozen Human Primary Cells
How to Thaw Frozen Human Primary Cells
Mini Review
Mesenchymal Stromal Cells: Markers, Isolation and Culture, Differentiation, and Therapeutic Potential

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Figure 1. Human Bone Marrow Stromal Cells Cultured Using the MesenCult™-ACF Culture Kit Maintain Multi-Lineage Differentiation Potential

Human bone marrow stromal cells derived in ACF medium (Catalog #70071) using the MesenCult™-ACF Culture Kit (Catalog #05449) differentiate to A) adipocytes (Oil Red O staining), B) chondrocytes (Alcian Blue and Nuclear Fast Red staining) and C) osteoblasts (Alizarin Red S staining).

Publications (4)

Stem cells (Dayton, Ohio) 2017 JAN Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates. Bajpai VK et al.


During development, neural crest (NC) cells are induced by signaling events at the neural plate border of all vertebrate embryos. Initially arising within the central nervous system, NC cells subsequently undergo an epithelial to mesenchymal transition to migrate into the periphery, where they differentiate into diverse cell types. Here we provide evidence that postnatal human epidermal keratinocytes (KC), in response to fibroblast growth factor 2 and insulin like growth factor 1 signals, can be reprogrammed toward a NC fate. Genome-wide transcriptome analyses show that keratinocyte-derived NC cells are similar to those derived from human embryonic stem cells. Moreover, they give rise in vitro and in vivo to NC derivatives such as peripheral neurons, melanocytes, Schwann cells and mesenchymal cells (osteocytes, chondrocytes, adipocytes, and smooth muscle cells). By demonstrating that human keratin-14+ KC can form NC cells, even from clones of single cells, our results have important implications in stem cell biology and regenerative medicine. Stem Cells 2017.
Nanotechnology 2017 FEB Mesenchymal stem cells cultured on magnetic nanowire substrates. Perez JE et al.


Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.
Journal of biotechnology 2015 NOV Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells. Cunha B et al.


The integration of up- and downstream unit operations can result in the elimination of hold steps, thus decreasing the footprint, and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC), where high numbers of pure cells, at low volumes, need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover, we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio, and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells, with high cell recovery (>80%) and viability (>95%); furthermore, continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death, when comparing to discontinuous diafiltration. Overall, an integrated process allowed for a shorter process time, recovering 70% of viable hMSC (>95%), with no changes in terms of morphology, immunophenotype, proliferation capacity and multipotent differentiation potential.
Bone 2015 FEB STAT-6 mediates TRAIL induced RANK ligand expression in stromal/preosteoblast cells. Sundaram K et al.


Receptor activator of nuclear factor kappa-B ligand (RANKL) is a critical osteoclastogenic factor expressed in bone marrow stromal/osteoblast lineage cells. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) levels are elevated in pathologic conditions such as multiple myeloma and inflammatory arthritis, and have been positively correlated with osteolytic markers. Osteoprotegerin (OPG) which inhibits osteoclastogenesis is a decoy receptor for RANKL and also known to interact with TRAIL. Herein, we show that TRAIL increases DR5 and DcR1 receptors but no change in the levels of DR4 and DcR2 expression in human bone marrow derived stromal/preosteoblast (SAKA-T) cell line. We further demonstrated that TRAIL treatment significantly decreased OPG mRNA expression. Interestingly, TRAIL treatment induced RANKL mRNA expression in these cells. In addition, TRAIL significantly increased NF-kB and c-Jun N-terminal kinase (JNK) activity. Human transcription factor array screening by real-time RT-PCR identified TRAIL up-regulation of the signal transducers and activators of the transcription (STAT)-6 expression in SAKA-T cells. TRAIL stimulation induced p-STAT-6 expression in human bone marrow derived primary stromal/preosteoblast cells. Confocal microscopy analysis further revealed p-STAT-6 nuclear localization in SAKA-T cells. Chromatin immunoprecipitation (ChIP) assay confirmed p-STAT-6 binding to the hRANKL gene distal promoter region. In addition, siRNA suppression of STAT-6 expression inhibits TRAIL increased hRANKL gene promoter activity. Thus, our results suggest that TRAIL induces RANKL expression through a STAT-6 dependent transcriptional regulatory mechanism in bone marrow stromal/preosteoblast cells.
View All Publications

Contact STEMCELL Technologies

Our Customer Service, Sales, and Product and Scientific Support departments in North America are available between 6 am and 5 pm Pacific Time (9 am and 8 pm Eastern Time). One of our representatives will be happy to help you by telephone or email. Please complete the form to contact us by email. A representative will get back to you shortly.

StemCell Technologies Inc. and affiliates ("STEMCELL Technologies") does not share your email address with third parties. StemCell Technologies Inc. will use your email address to confirm your identity and send you newsletters, transaction-related emails, promotional and customer service emails in accordance with our privacy policy. You can change your email preferences at any time.