Make more informed purchasing decisions with our new product availability and delivery estimate feature, now available on all product pages, in your cart, and during checkout.
Sign In
New to STEMCELL?
Register for an account to quickly and easily purchase products online and for one-click access to all educational content.
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Wortmannin is a fungal metabolite that covalently binds to and inhibits phosphatidylinositol-3-kinases (PI3K) of class I, II, and III. Species-specific differences in the class II PI3Ks determine sensitivity with IC₅₀ = 5, 50, and 450 nM for Drosophila, mouse, and human, respectively (Fruman et al.; Wymann et al.; Okada et al.). Wortmannin also inhibits polo-like kinases (PLK) PLK1 and PLK3 with IC₅₀ = 24 and 49 nM, respectively (Liu et al. 2005; Liu et al. 2007). At high concentrations it can also inhibit other kinases such as mammalian target of rapamycin (mTOR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), phosphatidylinositol-4-kinase (PI4K), myosin light-chain kinase (MLCK), and mitogen-activated protein kinase (MAPK; Fruman et al.; Meyers & Cantley; Hartley et al.; Brunn et al.; Nakanishi et al.).
CANCER RESEARCH
· Exhibits cytotoxic activity on a number of human tumor cell lines in vitro, and anti-tumor activity in mouse xenografts of C3H mammary carcinoma and BxPC-3 pancreatic carcinoma cells (Schultz et al.; Yuan et al.).
Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects.
Liu Y et al.
The Journal of biological chemistry 2007
Abstract
Polo-like kinases play crucial roles throughout mitosis. We previously reported that wortmannin potently inhibits Polo-like kinase 1 (Plk1). In this study, we show that wortmannin also strongly inhibits Polo-like kinase 3 (Plk3). To further characterize this inhibition, we identified the sites of labeling on Plk1 and Plk3 targeted by AX7503, a tetramethylrhodamine-wortmannin conjugate. AX7503 labeling on Plk1 and Plk3 was found to occur on a conserved ATP binding site residue. In addition, we show that wortmannin inhibits Plk3 activity in live cells at concentrations commonly used to inhibit the more well known targets of wortmannin, the phosphoinositide 3-kinases. Importantly, we found that inhibition of Plk3 by wortmannin lead to a decrease in phosphorylation of p53 on serine 20 induced by DNA damage, demonstrating the effect of wortmannin on a downstream Plk3 target. Taken together, our results suggest that wortmannin can affect multiple functions of Plk3 in cell cycle progression and at the DNA damage check point. The identification of the labeling sites of Plk1 and Plk3 by AX7503 may be useful in designing more effective compounds to target Polo-like kinases for cancer treatment and also may be useful for the structural study of Plk domains.
Covalent reactions of wortmannin under physiological conditions.
Yuan H et al.
Chemistry & biology 2007
Abstract
Wortmannin (Wm), a steroid-like molecule of 428.4 Da, appears to be unstable in biological fluids (apparent chemical instability), yet it exhibits an antiproliferative activity in assays employing a 48 hr incubation period (prolonged bioactivity), a situation we refer to as the wortmannin paradox." Under physiological conditions�
Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase.
Liu Y et al.
Chemistry & biology 2005
Abstract
Polo-like kinases (PLKs) play critical roles throughout mitosis. Here, we report that wortmannin, which was previously thought to be a highly selective inhibitor of phosphoinositide (PI) 3-kinases, is a potent inhibitor of mammalian PLK1. Observation of the wortmannin-PLK1 interaction was enabled by a tetramethylrhodamine-wortmannin conjugate (AX7503) that permits rapid detection of PLK1 activity and expression in complex proteomes. Importantly, we show that wortmannin inhibits PLK1 activity in an in vitro kinase assay with an IC(50) of 24 nM and when incubated with intact cells. Taken together, our results indicate that, at the concentrations of wortmannin commonly used to inhibit PI 3-kinases, PLK1 is also significantly inhibited.
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.