Make more informed purchasing decisions with our new product availability and delivery estimate feature, now available on all product pages, in your cart, and during checkout.
Sign In
New to STEMCELL?
Register for an account to quickly and easily purchase products online and for one-click access to all educational content.
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Fumonisin B1 is a mycotoxin produced by Fusarium moniliforme that has been shown to potently inhibit sphingosine N-acyltransferase (ceramide synthase; Wang et al.), thereby disrupting the synthesis of sphingolipids, a key component of plasma membranes (IC₅₀ = 0.1 µM). Fumonisin B1 also inhibits protein serine/threonine phosphatases (PPs; PP1, PP2A, PP2B, PP2C, and PP5/T/K/H) with IC₅₀ values of 80 - 3000 μM. PP5 is the most sensitive with an IC₅₀ of 80 μM (Fukuda et al.). Fumonisin B1, together with Alfatoxin B1, increases reactive oxygen species levels and oxidative damage in rat spleen cells (Mary et al.).
MAINTENANCE & SELF-RENEWAL
· Reversibly blocks cell proliferation and DNA synthesis in Swiss 3T3 cells (Meivar-Levy et al.).
· Blocks hexadecylphosphocholine (HePC)-induced apoptosis in human keratinocyte cell lines (Wieder et al.).
DIFFERENTIATION
· Disrupts dendrite growth in cerebellar Purkinje neurons (Furuya et al).
· Inhibits axonal branching in cultured hippocampal neurons (Schwarz et al.).
CANCER RESEARCH
· Attenuates the response of mouse lymphoma cell lines to platelet-activating factor and blocks HePC-induced apoptosis by inhibiting ceramide formation (Balsinde et al.).
Cell Type
Cancer Cells and Cell Lines, Keratinocytes, Leukemia/Lymphoma Cells, Neurons
CA WARNING: This product can expose you to Fumonisin B1 which is known to the State of California to cause cancer. For more information go to www.P65Warnings.ca.gov
Protocols and Documentation
Find supporting information and directions for use in the
Product Information Sheet or explore additional protocols below.
Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells.
Mary V et al.
Toxicology 2012 DEC
Abstract
Aflatoxin B1 (AFB(1)) and fumonisin B1 (FB(1)) are mycotoxins widely found as cereal contaminants. Their immunotoxicities predispose to infectious diseases and may alter the tumor immunosurveillance of human and animals, but the mechanisms underlying have not been fully elucidated, and the induction of oxidative stress has been proposed as a probable mechanism. This work was aimed at evaluating in spleen mononuclear cells (SMC) from Wistar rats the effects of the exposure, in vitro for up to 48 h, to 20 μM AFB(1), 10 μM FB(1) and AFB(1)-FB(1) mixture (MIX), over cellular oxidative status, as well as at elucidating the contribution of different reactive oxygen species (ROS) to biomolecular oxidative damage, the biochemical pathways involved, and the probable interaction of both toxins to induce oxidative stress. All the treatments increased total ROS and oxidation of biomolecules, with MIX having the greatest effects. However, only MIX increased superoxide anion radical. The main ROS involved in oxidation of proteins, lipids and DNA appear to be hydrogen peroxide and hydroxyl radical. The mitochondrial complex I and CYP450 were involved in the ROS generation induced by all treatments. The NADPH oxidase system was induced by FB1 and MIX. The arachidonic acid metabolism contributed to the ROS formation induced by AFB(1) and MIX. These results demonstrate that an interaction between AFB(1) and FB(1) occur in the oxidative stress induction, and show the biochemical pathways involved in ROS generation in SMC. The oxidative stress could mediate the AFB(1) and FB(1) individual and combined immunotoxicities.
Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine.
Wieder T et al.
The Journal of biological chemistry 1998 MAY
Abstract
The prototype of a new class of antiproliferative phospholipid analogs, hexadecylphosphocholine (HePC), has been shown to inhibit tumor growth and is currently used for the treatment of cutaneous metastases of mammary carcinomas. Although several cellular targets of HePC, e.g. protein kinase C and CTP:phosphocholine cytidylyltransferase, have been proposed, the mechanisms of HePC-induced anticancer activity are still unclear. Considering that the antiproliferative effect of HePC correlates with inhibition of phosphatidylcholine biosynthesis, which is tightly coupled to sphingomyelin biosynthesis, we tested the hypothesis that treatment of cells with the anticancer drug leads to increased cellular ceramide and subsequently to apoptotic cell death. In the present study, we showed that 25 micromol/liter HePC induced apoptosis. In further experiments, we demonstrated that HePC inhibited the incorporation of radiolabeled choline into phosphatidylcholine and at a later time point into sphingomyelin. This was confirmed by metabolic labeling of the lipid backbone using radiolabeled serine, and it was shown that HePC decreased the incorporation of serine into sphingomyelin by 35% and simultaneously increased the incorporation of serine into ceramide by 70%. Determination of the amount of ceramide revealed an increase of 53% in HePC-treated cells compared with controls. In accordance with the hypothesis that elevated ceramide levels may be the missing link between the metabolic effects of HePC and its proapoptotic properties, HePC-induced apoptosis was blocked by fumonisin B1, an inhibitor of ceramide synthesis. Furthermore, we found that membrane-permeable ceramides additively increased the apoptotic effect of HePC.
The role of sphingolipids in the maintenance of fibroblast morphology. The inhibition of protrusional activity, cell spreading, and cytokinesis induced by fumonisin B1 can be reversed by ganglioside GM3.
Meivar-Levy I et al.
The Journal of biological chemistry 1997 JAN
Abstract
Previous studies demonstrated that inhibition of sphingolipid synthesis by the mycotoxin fumonisin B1 (FB1) disrupts axonal growth in cultured hippocampal neurons (Harel, R., and Futerman, A. H. (1993) J. Biol. Chem. 268, 14476-14481) by affecting the formation or stabilization of axonal branches (Schwarz, A., Rapaport, E., Hirschberg, K., and Futerman, A.H. (1995) J. Biol. Chem. 270, 10990-10998). We now demonstrate that long term incubation with FB1 affects fibroblast morphology and proliferation. Incubation of Swiss 3T3 cells with FB1 resulted in a decrease in synthesis of ganglioside GM3, the major glycosphingolipid in 3T3 fibroblasts and of sphingomyelin. The projected cell area of FB1-treated cells was approximately 45% less than control cells. FB1 had no affect on the organization of microtubules or intermediate filaments, but fewer actin-rich stress fibers were observed, and there was a loss of actin-rich lamellipodia at the leading edge. Three other processes involving the actin cytoskeleton, cytokinesis, microvilli formation, and the formation of long processes induced by protein kinase inhibitors, were all disrupted by FB1. All the effects of FB1 on cell morphology could be reversed by addition of ganglioside GM3 even in the presence of FB1, whereas the bioactive intermediates, sphinganine, sphingosine, and ceramide, were without effect. Finally, FB1 blocked cell proliferation and DNA synthesis in a reversible manner, although ganglioside GM3 could not reverse the effects of FB1 on cell proliferation. Together, these data suggest that ongoing sphingolipid synthesis is required for the assembly of both new membrane and of the underlying cytoskeleton.
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.
Safety Statement:
CA WARNING: This product can expose you to Fumonisin B1 which is known to the State of California to cause cancer. For more information go to www.P65Warnings.ca.gov