Regulated expression of BAFF-binding receptors during human B cell differentiation.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Journal of immunology (Baltimore, Md. : 1950) 2007 DEC
Abstract
BAFF plays a central role in B-lineage cell biology; however, the regulation of BAFF-binding receptor (BBR) expression during B cell activation and differentiation is not completely understood. In this study, we provide a comprehensive ex vivo analysis of BBRs in human B-lineage cells at various stages of maturation, as well as describe the events that drive and regulate receptor expression. Our data reveal that B-lineage cells ranging from naive to plasma cells (PCs), excluding bone marrow PCs, express BAFF-R uniformly. In contrast, only tonsillar memory B cells (MB) and PCs, from both tonsil and bone marrow tissues, express BCMA. Furthermore, we show that TACI is expressed by MB cells and PCs, as well as a subpopulation of activated CD27(neg) B cells. In this regard, we demonstrate that TACI is inducible early upon B cell activation and this is independent of B cell turnover. In addition, we found that TACI expression requires activation of the ERK1/2 pathway, since its expression was blocked by ERK1/2-specific inhibitors. Expression of BAFF-R and B cell maturation Ag (BCMA) is also highly regulated and we demonstrate that BCMA expression is only acquired in MB cells and in a manner accompanied by loss of BAFF-R expression. This inverse expression coincides with MB cell differentiation into Ig-secreting cells (ISC), since blocking differentiation inhibited both induction of BCMA expression and loss of BAFF-R. Collectively, our data suggest that the BBR profile may serve as a footprint of the activation history and stage of differentiation of normal human B cells.