Phosphoinositide 3-kinase signalling regulates early development and developmental haemopoiesis.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Journal of cell science 2007 MAY
Abstract
Phosphoinositide 3-kinase (PI3K)-dependent signalling regulates a wide variety of cellular functions including proliferation and differentiation. Disruption of class I(A) PI3K isoforms has implicated PI3K-mediated signalling in development of the early embryo and lymphohaemopoietic system. We have used embryonic stem (ES) cells as an in vitro model to study the involvement of PI3K-dependent signalling during early development and haemopoiesis. Both pharmacological inhibition and genetic manipulation of PI3K-dependent signalling demonstrate that PI3K-mediated signals, most likely via 3-phosphoinositide-dependent protein kinase 1 (PDK1), are required for proliferation of cells within developing embryoid bodies (EBs). Surprisingly, the haemopoietic potential of EB-derived cells was not blocked upon PI3K inhibition but rather enhanced, correlating with modest increases in expression of haemopoietic marker genes. By contrast, PDK1-deficient EB-derived progeny failed to generate terminally differentiated haemopoietic lineages. This deficiency appeared to be due to a requirement for PI3K signalling during the proliferative phase of blast-colony-forming cell (BL-CFC) expansion, rather than as a result of effects on differentiation per se. We also demonstrate that PI3K-dependent signalling is required for optimal generation of erythroid and myeloid progenitors and their differentiation into mature haemopoietic colony types. These data demonstrate that PI3K-dependent signals play important roles at different stages of haemopoietic development.