Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Biochimica et biophysica acta 2002 jul
Abstract
Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and bio-membranes, is a crucial element in the regulation of normal physiological processes as well as pathological states. The biological effects of uridine have been associated with the regulation of the cardio-circulatory system, at the reproduction level, with both peripheral and central nervous system modulation and with the functionality of the respiratory system. Furthermore, uridine plays a role at the clinical level in modulating the cytotoxic effects of fluoropyrimidines in both normal and neoplastic tissues. The concentration of uridine in plasma and tissues is tightly regulated by cellular transport mechanisms and by the activity of uridine phosphorylase (UPase), responsible for the reversible phosphorolysis of uridine to uracil. We have recently completed several studies designed to define the mechanisms regulating UPase expression and better characterize the multiple biological effects of uridine. Immunohistochemical analysis and co-purification studies have revealed the association of UPase with the cytoskeleton and the cellular membrane. The characterization of the promoter region of UPase has indicated a direct regulation of its expression by the tumor suppressor gene p53. The evaluation of human surgical specimens has shown elevated UPase activity in tumor tissue compared to paired normal tissue.