Fabrication of uniform-sized poly-ɛ-caprolactone microspheres and their applications in human embryonic stem cell culture.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Biomedical microdevices 2015 DEC
Abstract
The generation of liquefied poly-ɛ-caprolactone (PCL) droplets by means of a microfluidic device results in uniform-sized microspheres, which are validated as microcarriers for human embryonic stem cell culture. Formed droplet size and size distribution, as well as the resulting PCL microsphere size, are correlated with the viscosity and flow rate ratio of the dispersed (Q d) and continuous (Q c) phases. PCL in dichloromethane increases its viscosity with concentration and molecular weight. Higher viscosity and Q d/Q c lead to the formation of larger droplets, within two observed formation modes: dripping and jetting. At low viscosity of dispersed phase and Q d/Q c, the microfluidic device is operated in dripping mode, which generates droplets and microspheres with greater size uniformity. Solutions with lower molecular weight PCL have lower viscosity, resulting in a wider concentration range for the dripping mode. When coated with extracellular matrix (ECM) proteins, the fabricated PCL microspheres are demonstrated capable of supporting the expansion of human embryonic stem cells.