Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Biomaterials 2006 DEC
Abstract
We have previously demonstrated that mouse embryonic stem (ES) cells differentiated on three-dimensional (3D), highly porous, tantalum-based scaffolds (Cytomatrixtrade mark) have significantly higher hematopoietic differentiation efficiency than those cultured under conventional two-dimensional (2D) tissue culture conditions. In addition, ES cell-seeded scaffolds cultured inside spinner bioreactors showed further enhancement in hematopoiesis compared to static conditions. In the present study, we evaluated how these various biomaterial-based culture conditions, e.g. 2D vs. 3D scaffolds and static vs. dynamic, influence the global gene expression profile of differentiated ES cells. We report that compared to 2D tissue culture plates, cells differentiated on porous, Cytomatrixtrade mark scaffolds possess significantly higher expression levels of extracellular matrix (ECM)-related genes, as well as genes that regulate cell growth, proliferation and differentiation. In addition, these differences in gene expression were more pronounced in 3D dynamic culture compared to 3D static culture. We report specific genes that are either uniquely expressed under each condition or are quantitatively regulated, i.e. over expressed or inhibited by a specific culture environment. We conclude that that biomaterial-based 3D cultures, especially under dynamic conditions, might favor efficient hematopoietic differentiation of ES cells by stimulating increased expression of specific ECM proteins, growth factors and cell adhesion related genes while significantly down-regulating genes that act to inhibit expression of these molecules.