Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Stem cells and development 2017 MAR
Abstract
Success in the differentiating human embryonic stem cells (hESCs) into insulin-secreting β cells raises new hopes for diabetes treatment. In this work, we demonstrated the feasibility of developing islet organoids from hESCs within biomimetic 3D scaffolds. We showed that such a 3D microenvironment is critical to the generation of pancreatic endoderm and endocrine from hESCs. The organoids formed consisted of pancreatic α, β, δ, and pancreatic polypeptide (PP) cells. A high-level co-expression of PDX1, NKX6.1, and NGN3 in these cells suggests the characteristics of pancreatic β cells. More importantly, most insulin-secreting cells generated did not express glucagon, somatostatin, or PP. The expression of mature β cell marker genes such as Pdx1, Ngn3, Insulin, MafA, and Glut2 was detected in these 3D-induced cell clusters. A high-level expression of C-peptide confirmed the de novo endogenous insulin production in these 3D induced cells. Insulin-secretory granules, an indication of β cell maturity, were detected in these cells as well. Glucose challenging experiments suggested that these cells are sensitive to glucose levels due to their elevated maturity. Exposing the cells to a high concentration of glucose induced a sharp increase in insulin secretion.