Cockayne syndrome b maintains neural precursor function.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
DNA repair 2013 FEB
Abstract
Neurodevelopmental defects are observed in the hereditary disorder Cockayne syndrome (CS). The gene most frequently mutated in CS, Cockayne Syndrome B (CSB), is required for the repair of bulky DNA adducts in transcribed genes during transcription-coupled nucleotide excision repair. CSB also plays a role in chromatin remodeling and mitochondrial function. The role of CSB in neural development is poorly understood. Here we report that the abundance of neural progenitors is normal in Csb(-/-) mice and the frequency of apoptotic cells in the neurogenic niche of the adult subependymal zone is similar in Csb(-/-) and wild type mice. Both embryonic and adult Csb(-/-) neural precursors exhibited defective self-renewal in the neurosphere assay. In Csb(-/-) neural precursors, self-renewal progressively decreased in serially passaged neurospheres. The data also indicate that Csb and the nucleotide excision repair protein Xpa preserve embryonic neural stem cell self-renewal after UV DNA damage. Although Csb(-/-) neural precursors do not exhibit altered neuronal lineage commitment after low-dose UV (1J/m(2)) in vitro, neurons differentiated in vitro from Csb(-/-) neural precursors that had been irradiated with 1J/m(2) UV exhibited defective neurite outgrowth. These findings identify a function for Csb in neural precursors.