Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
Request Pricing
Thank you for your interest in this product. Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Current protocols in stem cell biology 2010 AUG
Abstract
The ability of human embryonic stem cells (hESCs) to differentiate into essentially all somatic cell types has made them a valuable tool for studying human development and has positioned them for broad applications in toxicology, regenerative medicine, and drug discovery. This unit describes a protocol for the large-scale expansion and maintenance of hESCs in vitro. hESC cultures must maintain a balance between the cellular states of pluripotency and differentiation; thus, researchers must use care when growing these technically demanding cells. The culture system is based largely on the use of a proprietary serum-replacement product and basic fibroblast growth factor (bFGF), with mouse embryonic fibroblasts as a feeder layer. These conditions provide the basis for relatively inexpensive maintenance and expansion of hESCs, as well as their engineered counterparts, human induced pluripotent stem cells (hiPSCs).