TeSR™2

Xeno-free, defined, feeder-free medium for maintenance of undifferentiated human ES and iPS cells

More Views

359 CAD

Options

* Required Fields

Catalog # (Select a product)
Xeno-free, defined, feeder-free medium for maintenance of undifferentiated human ES and iPS cells
359 CAD

Overview

TeSR™ 2 is an improved version of mTeSR™ 1 which provides the same high-quality and robust system for feeder-free maintenance of human ES cells and iPS cells while enabling a more defined and xeno-free culture environment for basic research, stem cell banking, high-throughput studies and pre-clinical applications. Closely related to mTeSR™ 1, the most-published medium for the culture of human ES and iPS cells without feeders, TeSR™ 2 combines the advantages of a feeder-free culture system with the added value of being free of xenogenic components.
Components:
  • TeSR™ 2 Complete Kit (Catalog #05860)
    • TeSR™ 2 Basal Medium, 400 mL (Catalog #05861)
    • TeSR™ 2 5X Supplement, 100 mL (Catalog #05862)
    • TeSR™ 2 250X Supplement, 2 mL (Catalog #05863)
  • TeSR™ 2 Complete Kit, 10 Pack (Catalog #05880)
    • TeSR™ 2 Basal Medium, 10 x 400 mL (Catalog #05861)
    • TeSR™ 2 5X Supplement, 10 x 100 mL (Catalog #05862)
    • TeSR™ 2 250X Supplement, 10 x 2 mL (Catalog #05863)
Subtype:
Specialized Media
Cell Type:
Pluripotent Stem Cells
Species:
Human
Application:
Cell Culture; Expansion; Maintenance
Brand:
TeSR
Area of Interest:
Stem Cell Biology
Formulation:
Defined; Serum-Free; Xeno-Free

Technical Resources

Product Documentation

Document Type
Product Name
Catalog #
Lot #
Language

Educational Materials

(7)

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Morphology of hPSCs Maintained in TeSR™2 is Comparable to hPSCs Cultured in mTeSR™1

Figure 1. Morphology of hPSCs Maintained in TeSR™2 is Comparable to hPSCs Cultured in mTeSR™1

(A,B) Undifferentiated human ES (H9) cells cultured on Corning® Matrigel® matrix in TeSR™2 retain the prominent nucleoli and high nuclear-to-cytoplasm ratio characteristic of this cell type. Densely packed cells and multi-layering are apparent when cells are ready to be passaged. (C,D) H9 cells cultured under the same conditions in mTeSR™1 exhibit comparable morphology.

Fold and Cumulative Aggregate Expansion in TeSR™2

Figure 2. Fold and Cumulative Aggregate Expansion in TeSR™2

Graph shows the average fold expansion per passage ± SEM obtained for human ES and iPS cells cultured in mTeSR™1 (brown) or TeSR™2 (red) with Corning® Matrigel® over 10 passages. Expansion was determined by counting the cell aggregates obtained at harvest and dividing by the number of cell aggregates seeded.
Note: This data is representative of cultures passaged after 5-6 days in culture, lower expansion should be expected if using shorter culture times.

hESCs Cultured in TeSR™2 Are Pluripotent

Figure 3. hESCs Cultured in TeSR™2 Are Pluripotent

H9 cells were cultured for 11 passages in TeSR™2, then injected subcutaneously into NOD-SCID mice. The resulting teratomas contained cell types from all 3 germ layers. Representative tissue types are shown.

Human Pluripotent Stem Cells Cultured in TeSR™2 Retain Expression of Undifferentiated Cell Markers

Figure 4. Human Pluripotent Stem Cells Cultured in TeSR™2 Retain Expression of Undifferentiated Cell Markers

Histogram analysis for H9 human ES and WLS-1C human iPS cells characterized using flow cytometry for undifferentiated cell markers (SSEA-3 and OCT3/4) after passaging in TeSR™2 for 21 passages (WLS-1C) and 18 passages (H9) respectively (filled histogram = sample, hollow histogram = secondary antibody only).

Human ES Cells Cultured Long-Term in TeSR™2 Retain Normal Karyotype

Figure 5. Human ES Cells Cultured Long-Term in TeSR™2 Retain Normal Karyotype

Chromosomal analysis of H9 hES cells cultured in TeSR™2 for 12 passages shows that normal karyotype is retained during passaging.

Publications

(19)
Methods in molecular biology (Clifton, N.J.) 2016 December

Efficient Production of Photoreceptor Precursor Cells from Human Embryonic Stem Cells.

Yanai A et al.

Abstract

Transplantation of photoreceptor precursor cells (PPCs) differentiated from human embryonic stem cells (hESCs) is a promising approach to treat common blinding diseases such as age-related macular degeneration and retinitis pigmentosa. However, existing PPC generation methods are inefficient. To enhance differentiation protocols for rapid and high-yield production of PPCs, we focused on optimizing the handling of the cells by including feeder-independent growth of hESCs, using size-controlled embryoid bodies (EBs), and addition of triiodothyronine (T3) and taurine to the differentiation medium, with subsequent removal of undifferentiated cells via negative cell-selection. Our novel protocol produces higher yields of PPCs than previously reported while reducing the time required for differentiation, which will help understand retinal diseases and facilitate large-scale preclinical trials.
2016 December

Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate.

Kawase E

Abstract

Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human-induced pluripotent stem cells, are a renewable cell source for a wide range of applications in regenerative medicine and useful tools for human disease modeling and drug discovery. For these purposes, large numbers of high-quality cells are essential. Recently, we showed that a biological substrate, recombinant E8 fragments of laminin isoforms, sustains long-term self-renewal of hPSCs in defined, xeno-free medium with dissociated single-cell passaging. Here, we describe a modified culture system with similar performance to efficiently expand hPSCs under defined, xeno-free conditions using a non-biological synthetic substrate.
Methods in molecular biology (Clifton, N.J.) 2016 April

An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells.

Meng G et al.

Abstract

Efficient cryopreservation of human pluripotent stem cells (hPSCs) in chemically defined, xeno-free conditions is highly desirable for medical research and clinical applications such as cell-based therapies. Here we present a simple and effective slow freezing-rapid thawing protocol for the cryopreservation of feeder-free, single hPSCs. This cryopreservation protocol involves the supplementation of 10 % dimethyl sulfoxide (DMSO) and 10 µM Rho-associated kinase inhibitor Y-27632 into two types of xeno-free, defined media supplements (Knockout Serum Replacement and TeSR2). High post-thaw cell recovery ({\{}{\~{}}{\}}90 %) and cell expansion ({\{}{\~{}}{\}}70 %) can be achieved using this protocol. The cryopreserved single cells retain the morphological characteristics of hPSCs and differentiation capabilities of pluripotent stem cells.
2015 December

Cryopreservation of human pluripotent stem cells: a general protocol.

Miyazaki T et al.

Abstract

Cryopreservation is an essential technique to preserve stem cells, semipermanently sustaining their potentials. There are two main approaches of cryopreservation for human pluripotent stem cells (hPSCs). The first is the vitrification, which involves instantaneous freeze and thaw of hPSCs. The second is the conventional slow-cooling method and a rapid thaw. Both cryopreservation protocols have been standardized and optimized to yield high survivability of hPSCs.
Journal of visualized experiments : JoVE 2014 November

Derivation and characterization of a transgene-free human induced pluripotent stem cell line and conversion into defined clinical-grade conditions.

Awe J et al.

Abstract

Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology--provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications--for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.