References
-
Rodriguez-Fonseca C et al. (MAY 2000) RNA (New York, N.Y.) 6 5 744--54
Puromycin-rRNA interaction sites at the peptidyl transferase center.
The binding site of puromycin was probed chemically in the peptidyl-transferase center of ribosomes from Escherichia coli and of puromycin-hypersensitive ribosomes from the archaeon Haloferax gibbonsii. Several nucleotides of the 23S rRNAs showed altered chemical reactivities in the presence of puromycin. They include A2439, G2505, and G2553 for E. coli, and G2058, A2503, G2505, and G2553 for Hf. gibbonsii (using the E. coli numbering system). Reproducible enhanced reactivities were also observed at A508 and A1579 within domains I and III, respectively, of E. coli 23S rRNA. In further experiments, puromycin was shown to produce a major reduction in the UV-induced crosslinking of deacylated-(2N3A76)tRNA to U2506 within the P' site of E. coli ribosomes. Moreover, it strongly stimulated the putative UV-induced crosslink between a streptogramin B drug and m2A2503/psi2504 at an adjacent site in E. coli 23S rRNA. These data strongly support the concept that puromycin, along with other peptidyl-transferase antibiotics, in particular the streptogramin B drugs, bind to an RNA structural motif that contains several conserved and accessible base moieties of the peptidyl transferase loop region. This streptogramin motif is also likely to provide binding sites for the 3' termini of the acceptor and donor tRNAs. In contrast, the effects at A508 and A1579, which are located at the exit site of the peptide channel, are likely to be caused by a structural effect transmitted along the peptide channel. View PublicationCatalog #:Product Name:73342Puromycin -
Shimakura Y et al. (JAN 2000) Stem cells (Dayton, Ohio) 18 3 183--9
Murine stromal cell line HESS-5 maintains reconstituting ability of Ex vivo-generated hematopoietic stem cells from human bone marrow and cytokine-mobilized peripheral blood.
Human bone marrow (BM) or mobilized peripheral blood (mPB) CD34(+) cells have been shown to loose their stem cell quality during culture period more easily than those from cord blood (CB). We previously reported that human umbilical CB stem cells could effectively be expanded in the presence of human recombinant cytokines and a newly established murine bone marrow stromal cell line HESS-5. In this study we assessed the efficacy of this xenogeneic coculture system using human BM and mPB CD34(+) cells as materials. We measured the generation of CD34(+)CD38(-) cells and colony-forming units, and assessed severe-combined immunodeficient mouse-repopulating cell (SRC) activity using cells five days after serum-free cytokine-containing culture in the presence or the absence of a direct contact with HESS-5 cells. As compared with the stroma-free culture, the xenogeneic coculture was significantly superior on expansion of CD34(+)CD38(-) cells and colony-forming cells and on maintenance of SRC activity. The PKH26 study demonstrated that cell division was promoted faster in cells cocultured with HESS-5 cells than in cells cultured without HESS-5 cells. These results indicate that HESS-5 supports rapid generation of primitive progenitor cells (PPC) and maintains reconstituting ability of newly generated stem cells during ex vivo culture irrespective of the source of samples. This xenogeneic coculture system will be useful for ex vivo manipulation such as gene transduction to promote cell division and the generation of PPC and to prevent loss of stem cell quality. View PublicationCatalog #:Product Name:04064Starter Kit for MethoCult™ H4034 Optimum04034MethoCult™ H4034 Optimum -
Matsumoto K et al. (JAN 2000) Stem cells (Dayton, Ohio) 18 3 196--203
In vitro proliferation potential of AC133 positive cells in peripheral blood.
AC133 antigen is a novel marker for human hematopoietic stem/progenitor cells. In this study, we examined the expression and proliferation potential of AC133(+) cells obtained from steady-state peripheral blood (PB). The proportion of AC133(+) cells in the CD34(+) subpopulation of steady-state PB was significantly lower than that of cord blood (CB), although that of cytokine-mobilized PB was higher than that of CB. The proliferation potential of AC133(+)CD34(+) and AC133(-)CD34(+) cells was examined by colony-forming analysis and analysis of long-term culture-initiating cells (LTC-IC). Although the total number of colony-forming cells was essentially the same in the AC133(+)CD34(+) fraction as in the AC133(-)CD34(+) fraction, the proportion of LTC-IC was much higher in the AC133(+)CD34(+) fraction. Virtually no LTC-IC were detected in the AC133(-)CD34(+) fraction. In addition, the features of the colonies grown from these two fractions were quite different. Approximately 70% of the colonies derived from the AC133(+)CD34(+) fraction were granulocyte-macrophage colonies, whereas more than 90% of the colonies derived from the AC133(-)CD34(+) fraction were erythroid colonies. Furthermore, an ex vivo expansion study observed expansion of colony-forming cells only in the AC133(+)CD34(+) population, and not in the AC133(-)CD34(+) population. These findings suggest that to isolate primitive hematopoietic cells from steady-state PB, selection by AC133 expression is better than selection by CD34 expression. View PublicationCatalog #:Product Name:04034MethoCult™ H4034 Optimum -
Boissier S et al. (JUN 2000) Cancer research 60 11 2949--54
Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases.
The molecular mechanisms by which tumor cells metastasize to bone are likely to involve invasion, cell adhesion to bone, and the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are, therefore, used in the treatment of patients with osteolytic metastases. However, an added beneficial effect of BPs may be direct antitumor activity. We previously reported that BPs inhibit breast and prostate carcinoma cell adhesion to bone (Boissier et al., Cancer Res., 57: 3890-3894, 1997). Here, we provided evidence that BP pretreatment of breast and prostate carcinoma cells inhibited tumor cell invasion in a dose-dependent manner. The order of potency for four BPs in inhibiting tumor cell invasion was: zoledronate textgreater ibandronate textgreater NE-10244 (active pyridinium analogue of risedronate) textgreater clodronate. In addition, NE-58051 (the inactive pyridylpropylidene analogue of risedronate) had no inhibitory effect, whereas NE-10790 (a phosphonocarboxylate analogue of risedronate in which one of the phosphonate groups is substituted by a carboxyl group) inhibited tumor cell invasion to an extent similar to that observed with NE-10244, indicating that the inhibitory activity of BPs on tumor cells involved the R2 chain of the molecule. BPs did not induce apoptosis in tumor cells, nor did they inhibit tumor cell migration at concentrations that did inhibit tumor cell invasion. However, although BPs did not interfere with the production of matrix metalloproteinases (MMPs) by tumor cells, they inhibited their proteolytic activity. The inhibitory effect of BPs on MMP activity was completely reversed in the presence of an excess of zinc. In addition, NE-10790 did not inhibit MMP activity, suggesting that phosphonate groups of BPs are responsible for the chelation of zinc and the subsequent inhibition of MMP activity. In conclusion, our results provide evidence for a direct cellular effect of BPs in preventing tumor cell invasion and an inhibitory effect of BPs on the proteolytic activity of MMPs through zinc chelation. These results suggest, therefore, that BPs may be useful agents for the prophylactic treatment of patients with cancers that are known to preferentially metastasize to bone. View PublicationCatalog #:Product Name:73572Zoledronic Acid -
Wang TH et al. ( 2000) Cancer 88 11 2619--2628
Paclitaxel-induced cell death: where the cell cycle and apoptosis come together.
BACKGROUND: Compelling evidence indicates that paclitaxel kills cancer cells through the induction of apoptosis. Paclitaxel binds microtubules and causes kinetic suppression (stabilization) of microtubule dynamics. The consequent arrest of the cell cycle at mitotic phase has been considered to be the cause of paclitaxel-induced cytotoxicity. However, the biochemical events, downstream from paclitaxel's binding to microtubules, that lead to apoptosis are not well understood. METHODS: The authors examined recent scientific literature about the mechanisms by which paclitaxel exerts cytotoxicity. RESULTS: In addition to an arrest of the cell cycle at the mitotic phase in paclitaxel-treated cells, recent discoveries of activation of signaling molecules by paclitaxel and paclitaxel-induced transcriptional activation of various genes indicate that paclitaxel initiates apoptosis through multiple mechanisms. The checkpoint of mitotic spindle assembly, aberrant activation of cyclin-dependent kinases, and the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) are shown to be involved in paclitaxel-induced apoptosis. Consistent with observations that microtubules of different status (e.g., cytoskeletal microtubules vs. mitotic spindles) have different sensitivity to paclitaxel, the concentration of paclitaxel appears to be the major determinant of its apoptogenic mechanisms. CONCLUSIONS: Advances in research of the cell cycle and apoptosis have extended our understanding of the mechanisms of paclitaxel-induced cell death. Further elucidation of resistance and enhancement of paclitaxel-induced apoptosis should expedite the development of better paclitaxel-based regimens for cancer therapy. View PublicationCatalog #:Product Name:73312Paclitaxel -
Satoh T et al. ( 2000) Neuroscience letters 288 2 163--166
Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons.
Oxidative stress is implicated in the pathogenesis of neuronal degenerative diseases. Oxidative stress has been shown to activate extracellular signal-regulated kinases (ERK)1/2. We investigated the role of these mitogen-activated protein kinases (MAPKs) in oxidative neuronal injury by using a mouse hippocampal cell line (HT22) and rat primary cortical cultures. Here, we show that a novel MAPK/ERK kinase (MEK) specific inhibitor U0126 profoundly protected HT22 cells against oxidative stress induced by glutamate, which was accompanied by an inhibition of phosphorylation of ERK1/2. U0126 also protected rat primary cultured cortical neurons against glutamate or hypoxia. However, U0126 was not protective against death caused by tumor necrosis factor alpha (TNFalpha), A23187, or staurosporine. These results indicate that MEK plays a central role in the neuronal death caused by oxidative stress. View PublicationCatalog #:Product Name:73522U-0126 -
Hara M et al. (JUL 2000) Journal of neurosurgery 93 1 Suppl 94--101
Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats.
OBJECT In Japan fasudil hydrochloride (HA1077), a protein kinase inhibitor, is widely administered to prevent vasospasm in patients after subarachnoid hemorrhage. The effects of fasudil on experimental spinal cord injury (SCI) were investigated and compared with those obtained using methylprednisolone. METHODS Spinal cord contusion was induced in rats by applying an aneurysm clip extradurally to the spinal cord at T-3 for 1 minute. After injury three groups of rats were treated with intravenously administered saline (control), intraperitoneally administered fasudil (10 mg/kg), or intravenously administered methylprednisolone (four 30 mg/kg injections). Neurological recovery was evaluated periodically over 1 month by using a modified combined behavioral scale and histopathological examination. Leukocyte infiltration near the injury site was evaluated by measuring myeloperoxidase (MPO) activity at 24 hours. Spinal cord blood flow was measured at intervals up to 3 hours after injury by using laser Doppler flowmetry. In rats in the fasudil-treated group significant improvement in modified combined behavioral score was demonstrated at each time point, whereas in the methylprednisolone-treated rats no beneficial effects were shown. In the fasudil-treated group, reduction of traumatic spinal cord damage was evident histologically in the caudal portion of the injured areas, and tissue MPO activity in tissue samples was reduced. Spinal cord blood flow was not significantly different between fasudil-treated and control group rats. CONCLUSIONS Fasudil hydrochloride showed promise of effectiveness in promoting neurological recovery after traumatic SCI. Possible mechanisms of this effect include protein kinase inhibition and decreased infiltration by neutrophils. View PublicationCatalog #:Product Name:73662Fasudil -
Ross DD et al. (JUL 2000) Blood 96 1 365--8
Expression of breast cancer resistance protein in blast cells from patients with acute leukemia.
Breast cancer resistance protein (BCRP) is a novel member of the adenosine triphosphate-binding cassette superfamily of transport proteins. Transfection and enforced expression of BCRP in drug-sensitive cells confer resistance to mitoxantrone, doxorubicin, daunorubicin, and topotecan. We studied blast cells from 21 acute leukemia patients (20 acute myeloid leukemia, 1 acute lymphocytic leukemia) for the expression of BCRP mRNA using a quantitative reverse-transcription polymerase chain reaction assay. BCRP mRNA expression varied more than 1000-fold among the samples tested, with low or barely detectable expression in half of the samples. Seven samples (33%) had relatively high expression of BCRP mRNA. High expression of BCRP did not correlate strongly with high expression of P-glycoprotein, suggesting that BCRP may cause resistance to certain antileukemic drugs in P-glycoprotein-negative cases. High expression of BCRP mRNA is sufficiently frequent in AML to warrant more extensive investigations to determine the relation of disease subtype and treatment outcome to BCRP expression and function. View Publication -
Spivak JL (MAY 2000) Lancet 355 9216 1707--12
The blood in systemic disorders.
* The high rate of proliferation required of the bone marrow renders it highly susceptible to the influence of external factors. * Anaemia is the most common haematological abnormality seen in systemic disorders. * In the anaemia of chronic disease, erythropoietin production is reduced and proliferation of erythroid progenitor cells is also impaired; this anaemia can generally be alleviated by correction of the underlying disease process. * The status of the endocrine system must always be considered in evaluation of a normocytic, normochromic anaemia. * Anaemia in infection can be due to host or parasite factors or to the treatment administered. * Anaemia due to malignant disease responds to erythropoietin therapy in many cases; failure to respond is a poor prognostic sign. View PublicationCatalog #:Product Name:01630Erythropoietin (EPO) ELISA Kit -
Polakis P (AUG 2000) Genes & development 14 15 1837--51
Wnt signaling and cancer.
Catalog #:Product Name:72542IWP-372552IWP-472562IWR-1-endo72672XAV939 -
Richmond MH (JAN 1975) Methods in enzymology 43 4 672--7
Beta-lactamase (Escherichia coli R+TEM.
Catalog #:Product Name:04034MethoCult™ H4034 Optimum -
Sun SY et al. (SEP 2000) Molecular pharmacology 58 3 508--14
Dual mechanisms of action of the retinoid CD437: nuclear retinoic acid receptor-mediated suppression of squamous differentiation and receptor-independent induction of apoptosis in UMSCC22B human head and neck squamous cell carcinoma cells.
The synthetic retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437), which can bind to and activate the nuclear retinoic acid receptors beta and gamma (RARbeta/gamma), is a potent inducer of apoptosis in various cancer cell lines. However, this effect was reported to be independent of RARs. In this study, we compared and contrasted the potencies and mechanisms of action of CD437 and several other receptor-selective retinoids in induction of apoptosis and modulation of squamous differentiation in UMSCC22B human head and neck squamous cell carcinoma cell line. CD437 and the structurally related retinoid CD2325 exhibited almost equal potency in inducing apoptosis, whereas several other retinoids failed to induce apoptosis. The RAR-specific pan antagonist AGN193109 failed to suppress CD437-induced apoptosis, indicating that the induction of apoptosis by CD437 was RAR-independent. c-Fos expression was induced by CD437 and CD2325 that induced apoptosis in the cell line but not by other retinoids that failed to induce apoptosis, suggesting a role for c-Fos in CD437-induced apoptosis. At low concentration (0.01 microM), CD437 shared with several other receptor-selective retinoids the ability to suppress the mRNA levels of the squamous differentiation markers Spr1, involucrin, and cytokeratin 1. This effect of CD437 could be blocked by AGN193109. We conclude that CD437 can exert its effects in UMSCC22B human human head and neck squamous cell carcinoma cells by at least two mechanisms: RAR-mediated suppression of squamous differentiation and RAR-independent induction of apoptosis. View PublicationCatalog #:Product Name:72722CD437 -
Maloney PR et al. (AUG 2000) Journal of medicinal chemistry 43 16 2971--4
Identification of a chemical tool for the orphan nuclear receptor FXR.
Catalog #:Product Name:72892TTNPB -
Lin HZ et al. ( 2000) Nature medicine 6 9 998--1003
Metformin reverses fatty liver disease in obese, leptin-deficient mice.
There is no known treatment for fatty liver, a ubiquitous cause of chronic liver disease. However, because it is associated with hyperinsulinemia and insulin-resistance, insulin-sensitizing agents might be beneficial. To evaluate this possibility, insulin-resistant ob/ob mice with fatty livers were treated with metformin, an agent that improves hepatic insulin-resistance. Metformin improved fatty liver disease, reversing hepatomegaly, steatosis and aminotransferase abnormalities. The therapeutic mechanism likely involves inhibited hepatic expression of tumor necrosis factor (TNF) alpha and TNF-inducible factors that promote hepatic lipid accumulation and ATP depletion. These findings suggest a mechanism of action for metformin and identify novel therapeutic targets in insulin-resistant states. View PublicationCatalog #:Product Name:73252Metformin -
Davies SP et al. (OCT 2000) The Biochemical journal 351 Pt 1 95--105
Specificity and mechanism of action of some commonly used protein kinase inhibitors.
The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays. View PublicationCatalog #:Product Name:72152LY29400272172PD9805972302Y-2763272632SB20219073662Fasudil -
Schwede F et al. (JAN 2000) Pharmacology & therapeutics 87 2-3 199--226
Cyclic nucleotide analogs as biochemical tools and prospective drugs.
Cyclic AMP (cAMP) and cyclic GMP (cGMP) are key second messengers involved in a multitude of cellular events. From the wealth of synthetic analogs of cAMP and cGMP, only a few have been explored with regard to their therapeutic potential. Some of the first-generation cyclic nucleotide analogs were promising enough to be tested as drugs, for instance N(6),O(2)'-dibutyryl-cAMP and 8-chloro-cAMP (currently in clinical Phase II trials as an anticancer agent). Moreover, 8-bromo and dibutyryl analogs of cAMP and cGMP have become standard tools for investigations of biochemical and physiological signal transduction pathways. The discovery of the Rp-diastereomers of adenosine 3',5'-cyclic monophosphorothioate and guanosine 3',5'-cyclic monophosphorothioate as competitive inhibitors of cAMP- and cGMP-dependent protein kinases, as well as subsequent development of related analogs, has proven very useful for studying the molecular basis of signal transduction. These analogs exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity. Furthermore, better understanding of signaling pathways and ligand/protein interactions has led to new therapeutic strategies. For instance, Rp-8-bromo-adenosine 3',5'-cyclic monophosphorothioate is employed against diseases of the immune system. This review will focus mainly on recent developments in cyclic nucleotide-related biochemical and pharmacological research, but also highlights some historical findings in the field. View PublicationCatalog #:Product Name:736028-Bromo-cAMP -
Leclerc S et al. (JAN 2001) The Journal of biological chemistry 276 1 251--60
Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors?
The bis-indole indirubin is an active ingredient of Danggui Longhui Wan, a traditional Chinese medicine recipe used in the treatment of chronic diseases such as leukemias. The antitumoral properties of indirubin appear to correlate with their antimitotic effects. Indirubins were recently described as potent (IC(50): 50-100 nm) inhibitors of cyclin-dependent kinases (CDKs). We report here that indirubins are also powerful inhibitors (IC(50): 5-50 nm) of an evolutionarily related kinase, glycogen synthase kinase-3beta (GSK-3 beta). Testing of a series of indoles and bis-indoles against GSK-3 beta, CDK1/cyclin B, and CDK5/p25 shows that only indirubins inhibit these kinases. The structure-activity relationship study also suggests that indirubins bind to GSK-3 beta's ATP binding pocket in a way similar to their binding to CDKs, the details of which were recently revealed by crystallographic analysis. GSK-3 beta, along with CDK5, is responsible for most of the abnormal hyperphosphorylation of the microtubule-binding protein tau observed in Alzheimer's disease. Indirubin-3'-monoxime inhibits tau phosphorylation in vitro and in vivo at Alzheimer's disease-specific sites. Indirubins may thus have important implications in the study and treatment of neurodegenerative disorders. Indirubin-3'-monoxime also inhibits the in vivo phosphorylation of DARPP-32 by CDK5 on Thr-75, thereby mimicking one of the effects of dopamine in the striatum. Finally, we show that many, but not all, reported CDK inhibitors are powerful inhibitors of GSK-3 beta. To which extent these GSK-3 beta effects of CDK inhibitors actually contribute to their antimitotic and antitumoral properties remains to be determined. Indirubins constitute the first family of low nanomolar inhibitors of GSK-3 beta to be described. View PublicationCatalog #:Product Name:72782Kenpaullone -
Salt IP et al. (OCT 2000) Diabetes 49 10 1649--56
5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes.
Incubation of skeletal muscle with 5-aminoimidazole-4carboxamide ribonucleoside (AICAR), a compound that activates 5'-AMP-activated protein kinase (AMPK), has been demonstrated to stimulate glucose transport and GLUT4 translocation to the plasma membrane. In this study, we characterized the AMPK cascade in 3T3-L1 adipocytes and the response of glucose transport to incubation with AICAR. Both isoforms of the catalytic alpha-subunit of AMPK are expressed in 3T3-L1 adipocytes, in which AICAR stimulated AMPK activity in a time- and dose-dependent fashion. AICAR stimulated 2-deoxy-D-glucose transport twofold and reduced insulin-stimulated uptake to 62% of the control transport rate dose-dependently, closely correlating with the activation of AMPK. AICAR also inhibited insulin-stimulated GLUT4 translocation, assessed using the plasma membrane lawn assay. The effects of AICAR on insulin-stimulated glucose transport are not mediated by either adenosine receptors or nitric oxide synthase and are mediated downstream of phosphatidylinositol 3'-kinase stimulation. We propose that in contrast to skeletal muscle, in which AMPK stimulation promotes glucose transport to provide ATP as a fuel, AMPK stimulation inhibits insulin-stimulated glucose transport in adipocytes, inhibiting triacylglycerol synthesis, to conserve ATP under conditions of cellular stress. Investigation of the mode of action of AICAR and AMPK may, therefore, give insight into the mechanism of insulin action. View PublicationCatalog #:Product Name:72702AICAR -
Migliaccio AR et al. (OCT 2000) Blood 96 8 2717--22
Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity.
There is evidence that the total cellular content of placental cord blood (PCB) grafts is related to the speed of engraftment, though the total nucleated cell (TNC) dose is not a precise predictor of the time of neutrophil or platelet engraftment. It is important to understand the reasons for the quantitative association and to improve the criteria for selecting PCB grafts by using indices more precisely predictive of engraftment. The posttransplant course of 204 patients who received grafts evaluated for hematopoietic colony-forming cell (CFC) content among 562 patients reported previously were analyzed using univariate and multivariate life-table techniques to determine whether CFC doses predicted hematopoietic engraftment speed and risk for transplant-related events more accurately than the TNC dose. Actuarial times to neutrophil and platelet engraftment were shown to correlate with the cell dose, whether estimated as TNC or CFC per kilogram of recipient's weight. CFC association with the day of recovery of 500 neutrophils/microL, measured as the coefficient of correlation, was stronger than that of the TNC (R = -0.46 and -0.413, respectively). In multivariate tests of speed of platelet and neutrophil engraftment and of probability of posttransplantation events, the inclusion of CFC in the model displaced the significance of the high relative risks associated with TNC. The CFC content of PCB units is associated more rigorously with the major covariates of posttransplantation survival than is the TNC and is, therefore, a better index of the hematopoietic content of PCB grafts. (Blood. 2000;96:2717-2722) View PublicationCatalog #:Product Name:04437MethoCult™ Express -
Seale P et al. (SEP 2000) Cell 102 6 777--86
Pax7 is required for the specification of myogenic satellite cells.
The paired box transcription factor Pax7 was isolated by representational difference analysis as a gene specifically expressed in cultured satellite cell-derived myoblasts. In situ hybridization revealed that Pax7 was also expressed in satellite cells residing in adult muscle. Cell culture and electron microscopic analysis revealed a complete absence of satellite cells in Pax7(-/-) skeletal muscle. Surprisingly, fluorescence-activated cell sorting analysis indicated that the proportion of muscle-derived stem cells was unaffected. Importantly, stem cells from Pax7(-/-) muscle displayed almost a 10-fold increase in their ability to form hematopoietic colonies. These results demonstrate that satellite cells and muscle-derived stem cells represent distinct cell populations. Together these studies suggest that induction of Pax7 in muscle-derived stem cells induces satellite cell specification by restricting alternate developmental programs. View PublicationCatalog #:Product Name:03534MethoCult™ GF M353403134MethoCult™ M313403231MethoCult™ M323103234MethoCult™ M323403334MethoCult™ M333403434MethoCult™ GF M343403236MethoCult™ SF M3236 -
Caraher EM et al. (OCT 2000) Journal of immunological methods 244 1-2 29--40
Flow cytometric analysis of intracellular IFN-gamma, IL-4 and IL-10 in CD3(+)4(+) T-cells from rat spleen.
The application of multi-parameter flow cytometry for the assessment of T-cell and cytokine functioning has been used by several groups for studying human and mouse samples, although little has been reported for the rat. Here we report the optimisation of immunofluorescent staining for cell surface and intracellular antigens using three-colour flow cytometric analysis to measure the frequency of rat CD3(+)4(+) T-cells that produce IFN-gamma, IL-4 and IL-10. In vitro stimulation of IFN-gamma production required incubation of splenocytes with PMA and ionomycin in the presence of the protein transport inhibitor brefeldin A for 6 h. Three stimulation protocols for IL-4 and IL-10 production were evaluated. In vitro priming of splenic T-cells with antibodies against CD3 and CD28 and recombinant cytokines (IL-2 and IL-4) for 5 days followed by restimulation with PMA and ionomycin was required to stimulate cells to produce either IL-4 or IL-10. Brefeldin A was found to be a more suitable protein transport inhibitor than monensin. This method will be useful for analysing the nature of individual rat cytokine-producing cells in a variety of experimental model systems. View PublicationCatalog #:Product Name:73722Ionomycin -
Coghlan MP et al. (OCT 2000) Chemistry & biology 7 10 793--803
Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription.
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the identification and characterisation of potent and selective small molecule inhibitors of GSK-3. RESULTS SB-216763 and SB-415286 are structurally distinct maleimides that inhibit GSK-3alpha in vitro, with K(i)s of 9 nM and 31 nM respectively, in an ATP competitive manner. These compounds inhibited GSK-3beta with similar potency. However, neither compound significantly inhibited any member of a panel of 24 other protein kinases. Furthermore, treatment of cells with either compound stimulated responses characteristic of extracellular stimuli that are known to inhibit GSK-3 activity. Thus, SB-216763 and SB-415286 stimulated glycogen synthesis in human liver cells and induced expression of a beta-catenin-LEF/TCF regulated reporter gene in HEK293 cells. In both cases, compound treatment was demonstrated to inhibit cellular GSK-3 activity as assessed by activation of glycogen synthase, which is a direct target of this kinase. CONCLUSIONS SB-216763 and SB-415286 are novel, potent and selective cell permeable inhibitors of GSK-3. Therefore, these compounds represent valuable pharmacological tools with which the role of GSK-3 in cellular signalling can be further elucidated. Furthermore, development of similar compounds may be of use therapeutically in disease states associated with elevated GSK-3 activity such as non-insulin dependent diabetes mellitus and neurodegenerative disease. View PublicationCatalog #:Product Name:72872SB216763 -
Bishop GA et al. (NOV 2000) Journal of immunology (Baltimore, Md. : 1950) 165 10 5552--7
Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848.
The imidazoquinoline R-848, originally identified as a highly effective antiviral agent, has recently been shown to be capable of potent B lymphocyte activation. The B cell-activating properties of R-848 are strikingly similar to the effects of the CD40 ligand CD154. The present study demonstrates that this similarity extends to the intracellular signaling pathways triggered by the compound, although both overlapping and distinct mechanisms of signaling were seen. Like CD40 ligation, R-848 stimulated activation of the stress-activated protein kinases c-Jun kinase and p38 and activated the NF-kappaB family of transcription factors. Both R-848- and CD40-mediated B cell differentiation were dependent upon NF-kappaB activation, although the relative importance of individual NF-kappaB family members appeared to differ between R-848- and CD40-mediated signals. Both signals were partially dependent upon induction of TNF-alpha and IL-6, and the cytoplasmic adaptor molecule TNF receptor-associated factor 2 is involved in both R-848- and CD40-mediated differentiation. View PublicationCatalog #:Product Name:73782R848 -
Keir M et al. (JAN 1976) Hospitals 50 1 30
Sen. Robert J. Dole (R-KS).
Catalog #:Product Name:04535MethoCult™ H4535 Enriched Without EPO