TeSR™-E7™

Feeder-free, xeno-free reprogramming medium for human iPS cell induction

More Views

TeSR™-E7™ Medium for Reprogramming

Feeder-free, xeno-free reprogramming medium for human iPS cell induction

500 mL
Catalog #05910
221 USD

Overview

TeSR™-E7™ is a xeno-free and defined reprogramming culture medium optimized for the generation of human iPS cells without the use of feeders. It is based on the E7 formulation published by the laboratory of Dr. James Thomson (University of Wisconsin-Madison).
Advantages:
• Pre-screened components ensure high quality iPS cell colony morphology for easy identification and improved manual selection
• Reduced differentiation and fibroblast growth enables rapid establishment of homogeneous iPS cell cultures
• Feeder-free, defined formulation facilitates reproducibly efficient human iPS cell generation
Components:
  • TeSR™-E7™ Basal Medium, 474 mL
  • TeSR™-E7™ 20X Supplement, 25 mL
  • TeSR™-E7™ 500X Supplement, 1 mL
Subtype:
Specialized Media
Cell Type:
Pluripotent Stem Cells
Species:
Human
Application:
Reprogramming; Cell Culture
Brand:
TeSR
Area of Interest:
Stem Cell Biology
Formulation:
Serum-Free; Xeno-Free; Defined

Scientific Resources

Educational Materials

(6)

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Schematic of Reprogramming Timeline

Figure 1. Schematic of Reprogramming Timeline

TeSR™-E7™ can be used during the entire induction phase of reprogramming (day 3 to 25+). Following reprogramming, iPS cell colonies can be isolated and propogated in feeder-free maintenance systems (eg. mTeSR™1 or TeSR™-E8™ media on Corning® Matrigel® or Vitronectin XF™ matrices).

Morphology of Representative iPS Cell Colonies Arising During the Induction Period in TeSR™-E7™

Figure 2. Morphology of Representative iPS Cell Colonies Arising During the Induction Period in TeSR™-E7™

(A-B) Small clusters of colonies with an epithelial-like morphology will appear by one to two weeks following induction (see arrows). (C-D) These clusters expand into pre-iPS cell colonies by two to three weeks. (E-F) Larger ES cell-like colonies are clearly identifiable by three to four weeks. Representative colonies from adult human fibroblasts reprogrammed with episomal vectors containing OCT-4, SOX2, KLF-4, and L-MYC are shown.

Comparison of Primary iPS Cell Colonies Derived Using TeSR™-E7™ and KOSR-based Medium

Figure 3. Comparison of Primary iPS Cell Colonies Derived Using TeSR™-E7™ and KOSR-Based Medium

(A) TeSR™-E7™ generates colonies with defined borders and less overgrowth of background fibroblasts compared to (B) KOSR-based iPS cell induction medium. Representative colonies from adult human fibroblasts reprogrammed with episomal vectors containing OCT-4, SOX2, KLF-4, and L-MYC are shown.

Comparison of Primary iPS Cell Colonies Derived Using TeSR™-E7™ with Qualified vs Unqualified bFGF

Figure 4. Comparison of Primary iPS Cell Colonies Derived Using TeSR™-E7™ with Qualified vs Unqualified bFGF

(A) TeSR™-E7™ yields easily recognizable iPS cell colonies with defined borders. (B) Unqualified components can result in colonies that have poorly defined edges and higher levels of differentiation. Representative colonies from adult human fibroblasts reprogrammed with episomal vectors containing OCT-4, SOX2, KLF-4, and L-MYC are shown.

iPS Colonies Expanded in mTeSR™ or TeSR™-E8™

Figure 5. iPS Colonies Expanded in mTeSR™ or TeSR™-E8™

(A - D) iPS cell colonies generated in TeSR™-E7™ and expanded in either mTeSR™1 on Corning® Matrigel® (A-B) or TeSR™-E8™ on Vitronectin XF™ (C, D) exhibit classic ES cell morphology with dense colony centers, defined borders, prominent nucleoli and high nuclear-to-cytoplasmic ratios. (E) iPS cells express high levels of pluripotency markers after just two passages in either mTeSR™1 or TeSR™-E8™ as demonstrated by OCT-4 and SSEA-3 flow cytometry analysis. Data are expressed as mean ± SEM, n = 4.

TeSR™-E7™ Supports Reprogramming of Human Cell Types Including Adult Dermal Fibroblasts and Neonatal Fibroblasts

Figure 6. TeSR™-E7™ Supports Reprogramming of Human Cell Types Including Adult Dermal Fibroblasts and Neonatal Fibroblasts

Reprogramming of (A) adult normal human dermal fibroblasts (NHDF, 33 year-old female) and (B) neonatal foreskin fibroblasts (BJ cells) with episomal reprogramming vectors are shown. TeSR™-E7™ demonstrated similar (in NHDF) or greater (in BJ cells) reprogramming efficiencies compared to KOSR-based iPS cell induction medium. TeSR™-E7™ demonstrated higher reprogramming efficiencies compared to TeSR™-E8™. Data are expressed as mean ± SEM, n ≥ 6, * p ≤ 0.05.

iPS Cells Derived in TeSR™-E7™ Display Normal Karyotype

Figure 7. iPS Cells Derived in TeSR™-E7™ Display Normal Karyotype

iPS cell lines were generated in TeSR™-E7™ medium, maintained in mTeSR™1 or TeSR™-E8™ media for a minimum of 5 passages and karyotyped by G-banding karyotype analysis. Three iPS cell lines were analyzed and all demonstrated a normal karyotype; a representative karyogram is shown.

Directed Differentiation of iPS Cells to All Three Germ Layers

Figure 8. Directed Differentiation of iPS Cells to All Three Germ Layers

TeSR™-E7™-derived iPS cells were differentiated into all three germ layers. Endoderm specification was achieved using the STEMdiff™ Definitive Endoderm Kit, results demonstrated 93.6% SOX17 + CXCR4 + cells. Mesoderm specification was demonstrated using a STEMdiff™ APEL™ medium-based endothelial differentiation protocol, results demonstrated &ht;99% CD31 + cells (data not shown) and 84.8% VEGFR2 + CD105 + cells. Ectoderm specification was demonstrated using STEMdiff™ Neural Induction Medium, immunocytochemistry shows high levels of PAX6 staining with no detectable OCT-4 staining by day 9 of neural induction.

Publications

(9)
Mitochondrion 2017 MAY

Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming.

Mizuguchi Y et al.

Abstract

Mitochondrial disease is associated with a wide variety of clinical presentations, even among patients carrying heteroplasmic mitochondrial DNA (mtDNA) mutations, probably because of variations in mutant mtDNA proportions at the tissue and organ levels. Although several case reports and clinical trials have assessed the effectiveness of various types of drugs and supplements for the treatment of mitochondrial diseases, there are currently no cures for these conditions. In this study, we demonstrated for the first time that low dose resveratrol (RSV) ameliorated mitochondrial respiratory dysfunction in patient-derived fibroblasts carrying homoplasmic mtDNA mutations. Furthermore, low dose RSV also facilitated efficient cellular reprogramming of the patient-derived fibroblasts into induced pluripotent stem cells, partly due to improved cellular viability. Our results highlight the potential of RSV as a new therapeutic drug candidate for the treatment of mitochondrial diseases.
Stem cells translational medicine 2017 MAR

A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.

Bell S et al.

Abstract

The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here, we illustrate a rapid, simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution, which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology, allows for the development of appropriate control lines for use in rare neurodevelopmental disease research, and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.
Stem cell reports 2017 JUL

Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing.

Tidball AM et al.

Abstract

Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue.
Scientific reports 2016 MAR

TGF$$ signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells.

Wang L et al.

Abstract

Human urine cells (HUCs) can be reprogrammed into neural progenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) with defined factors and a small molecule cocktail, but the underlying fate choice remains unresolved. Here, through sequential removal of individual compound from small molecule cocktail, we showed that A8301, a TGF$$ signaling inhibitor, is sufficient to switch the cell fate from iPSCs into NPCs in OSKM-mediated HUCs reprogramming. However, TGF$$ exposure at early stage inhibits HUCs reprogramming by promoting EMT. Base on these data, we developed an optimized approach for generation of NPCs or iPSCs from HUCs with significantly improved efficiency by regulating TGF$$ activity at different reprogramming stages. This approach provides a simplified and improved way for HUCs reprogramming, thus would be valuable for banking human iPSCs or NPCs from people with different genetic background.
Oncology reports 2016 AUG

Regulation of tumorigenesis in oral epithelial cells by defined reprogramming factors Oct4 and Sox2.

Cai J et al.

Abstract

Oct4 and Sox2 are pluripotent stem cell factors but the interplay between them in tumorigenesis is unclear. The aim of the present study was to investigate the roles of Oct4 and Sox2 in the reprogramming of oral cancer stem cells. One or both Oct4 and Sox2 were overexpressed in immortalized oral epithelial (hTERT+-OME) cells by lentivirus transduction. In addition, Oct4 and Sox2 proteins in two oral squamous cell carcinoma cell (OSCC) lines (Cal27 and primary cultured OSCC from a T2N2M0 patient) were individually or combinedly knocked down by shRNA. The results showed that the doubly transduced (Oct4+Sox2+) cells could trigger neoplasms in immunodeficient mice after lentivirus transduction, but single transduced (Oct4+ or Sox2+) cells had no tumor formation ability. The knockdown Sox2low and knockdown Oct4lowSox2low cells resulted in decreased tumor size in the immunodeficient mice but the single knockdown Oct4low cancer cells acquired more aggressive xenografts. Our findings suggest that Oct4+Sox2+ cells may be reprogrammed cancer stem cells inducing oral carcinogenesis.
STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.
Chat with an Expert