STEMdiff™ Pancreatic Progenitor Kit

Serum-free, defined medium for the differentiation of human ES and iPS cells to pancreatic progenitor cells

STEMdiff™ Pancreatic Progenitor Kit

Serum-free, defined medium for the differentiation of human ES and iPS cells to pancreatic progenitor cells

1 Kit
Catalog #05120
864 USD

Required Products

Overview

STEMdiff™ Pancreatic Progenitor Kit is a serum-free, defined medium that supports efficient and reproducible generation of pancreatic progenitor cells from human pluripotent stem cells (hPSCs). Cells are differentiated through four stages: 1) definitive endoderm, 2) primitive gut tube, 3) posterior foregut endoderm, and 4) pancreatic progenitor cells. The differentiated cells express key markers of pancreatic progenitor cells, including PDX-1, NKX6.1 and SOX9 and up-regulation of insulin and glucagon. The resulting pancreatic progenitor cells can be further differentiated to insulin-producing beta cells or other endocrine and exocrine pancreatic cell fates.

Optimized for differentiation of cells maintained in mTeSR™1.
Advantages:
• Generates functional pancreatic progenitor cells for transplantation into animal models or for further maturation into insulin-producing b-cells
• Efficient and reproducible differentiation of multiple hPSC lines to pancreatic progenitor cells, expressing PDX-1, NKX6.1 and SOX9
• Serum-free and defined medium
• Compatible with multiple human ES and iPS cell lines maintained in mTeSR™ 1
Components:
  • STEMdiff™ Pancreatic Stage 1 Basal Medium, 75 mL
  • STEMdiff™ Pancreatic Stage 2 - 4 Basal Medium, 265 mL
  • STEMdiff™ Pancreatic Supplement 1A, 240 µL
  • STEMdiff™ Pancreatic Supplement 1B, 720 µL
  • STEMdiff™ Pancreatic Supplement 2A, 240 µL
  • STEMdiff™ Pancreatic Supplement 2B, 720 µL
  • STEMdiff™ Pancreatic Supplement 3, 720 µL
  • STEMdiff™ Pancreatic Supplement 4, 1.2 mL
Subtype:
Specialized Media
Cell Type:
Pancreatic Cells; Pluripotent Stem Cells
Species:
Human
Application:
Cell Culture; Differentiation
Brand:
STEMdiff
Area of Interest:
Cancer Research; Disease Modeling; Epithelial Cell Biology; Stem Cell Biology
Formulation:
Serum-Free; Defined

Scientific Resources

Educational Materials

(9)

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications

Data

Pancreatic Progenitor Cells can Mature into Endocrine and Exocrine Cells

Figure 1. Pancreatic Progenitor Cells can Mature into Endocrine and Exocrine Cells

A) Representative image showing pancreatic progenitor cells expressing PDX-1 (red) and NKX6.1 (green). Yellow staining indicates co‑expression of both markers in the majority of cells as is observed in the developing human pancreas.1 (B, C) Cells transplanted into mice can mature into endocrine and exocrine cells.
B) shows endocrine clusters expressing synaptophysin (red) surrounded by ductal structures expressing CK-19 (green).
C) Shows islet-like structures containing monohormonal cells that individually express insulin (red), glucagon (green) or somatostatin (blue). Data in (B, C) are from the laboratory of Dr. Timothy J. Kieffer (University of British Columbia, Vancouver, Canada).

A. The STEMdiff™ Pancreatic Progenitor Kit Functions Efficiently Across Multiple hPSC Lines
B. The STEMdiff™ Pancreatic Progenitor Kit Functions Efficiently Across Multiple hPSC Lines

Figure 2. The STEMdiff™ Pancreatic Progenitor Kit Functions Efficiently Across Multiple hPSC Lines

PDX-1 and NKX6.1 expression measured in pancreatic progenitor cells derived from four different hPSC lines (H1, H9, WLS-4D1 and WLS-1C) at the end of Stage 4. (A) Representative flow cytometry plots show PDX-1 and NKX6.1 co-expression in differentiated H9 cells. (B) Quantitative data for PDX-1/NKX6.1 co-expression in two human ES (H1 and H9) and two human iPS (WLS-4D1 and WLS-1C) cell lines (n = 5-10 per cell line). Data are plotted as individual points representing the mean of duplicates within a single experiment. The horizontal line represents the mean of all experiments, with error bars indicating the standard error of the mean (SEM). The average efficiency of pancreatic progenitor differentiation ranges from 61.5% to 77.7% depending on the cell line.

Gene Expression Profile is Indicative of Transition to Pancreatic Progenitor Cells

Figure 3. Gene Expression Profile is Indicative of Transition to Pancreatic Progenitor Cells

Gene expression profile at the end of each stage of differentiation for key markers of pancreatic progenitor cells. Expression was normalized to 18S ribosomal RNA and TATA Binding Protein (TBP). Data are the mean ± SEM for 3 - 5 experiments. Expression pattern is consistent with published data.²
 
1. Riedel M et al. (2012) Immunohistochemical characterization of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55(2): 372-81.
2. Rezania A et al. (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11): 1121-33.

Testimonials

We get a really great efficiency of differentiation in several pluripotent stem cell lines determined by expression of key markers: upregulation of PDX1, SOX9, FOXA2 and GATA4, and down-regulation of Sox17. We can generate these pancreatic progenitor cells reproducibly and efficiently; variability within the protocol is low.

Drs. Jamie Trott and Ray Dunn, A*STAR Institute of Medical Biology (IMB), Singapore

STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.
Chat with an Expert