Rosiglitazone

PPARγ activator

Rosiglitazone

PPARγ activator

From: 87 USD
Catalog #
(Select a product)
PPARγ activator
Add to Wish List

Overview

Rosiglitazone is a potent and selective PPARγ ligand. It binds to the PPARγ ligand-binding domain with a Kd of 43 nM (Lehmann et al.). It activates luciferase-based expression constructs PPARγ1 and PPARγ2 with EC₅₀ values of approximately 30 nM and 100 nM, respectively (Lehmann et al.).

MAINTENANCE AND SELF-RENEWAL
· Stimulates embryonic mouse neural stem cell proliferation and inhibits neuronal differentiation (Wada et al.).

DIFFERENTIATION
· Induces adipocyte differentiation in C3H10T1/2 stem cells (Lehmann et al.).
· Promotes endothelial differentiation, and inhibits smooth muscle differentiation, in angiogenic progenitor cells (Wang et al.).
· Stimulates adipocyte differentiation, and decreases osteogenesis, in mouse and human bone marrow-derived mesenchymal stem cells (Ali et al.; Benvenuti et al.; Lecka-Czernik et al.; Sorocéanu et al.).
· Enhances osteoclast formation in mouse bone marrow cells stimulated with RANKL and M-CSF (Wu et al.).
Cell Type
Adipocytes, Angiogenic Cells, Mesenchymal Stem and Progenitor Cells, Neural Stem and Progenitor Cells
Species
Human, Mouse, Non-Human Primate, Other, Rat
Application
Differentiation, Expansion
Area of Interest
Neuroscience, Stem Cell Biology
CAS Number
122320-73-4
Chemical Formula
C₁₈H₁₉N₃O₃S
Purity
≥ 98%
Pathway
PPARγ
Target
PPARγ

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Product Name
Rosiglitazone
Catalog #
72622, 72624
Lot #
All
Language
English
Document Type
Safety Data Sheet
Product Name
Rosiglitazone
Catalog #
72622, 72624
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Educational Materials (1)

Publications (8)

Regulation of selective PPARγ modulators in the differentiation of osteoclasts. Wu H et al. Journal of cellular biochemistry 2013 SEP

Abstract

Diabetes is the most common chronic disease in the world and causes complications with many diseases, such as heart disease and osteoporosis. Osteoporosis is a systemic bone disease characterized by imbalance in bone resorption and bone formation. Osteoclast is type of bone cell that functions in bone resorption and plays a critical role in bone remodeling. Rosiglitazone and pioglitazone, which belong to Thiazolidinediones(TZDs), are commonly used antidiabetic drugs. As PPARγ full agonists, they can activate PPARγ in a ligand-dependent way. Recent studies indicate that these PPARγ full agonists have some side effects, such as weight gain and bone loss, which may increase the risk of osteoporosis. In contrast, selective PPARγ Modulators (SPPARγMs) are novel PPARγ ligands that can activate PPARγ in different ways and lead to distinct downstream genes. Mice bone marrow cells were stimulated with recombinant mouse RANKL and M-CSF to generate osteoclasts. To determine the effect on osteoclasts formation, PPARγ ligands (Rosiglitazone, Fmoc-L-Leu, and Telmisartan) were added at the beginning of the culture. Rosiglitazone significantly increased the differentiation of multinucleated osteoclasts, while osteoclasts formation triggered by SPPARγMs was much less than that displayed by rosiglitazone. We found that the enhancement of PPARγ ligands may be associated with TRAF6 and downstream ERK signal pathway. We also demonstrated osteoclasts show characteristic M2 phenotype and can be further promoted by PPARγ ligands, especially rosiglitazone. In conclusion, reduced osteoclasts differentiation characteristic of SPPARγMs highlights SPPARγMs potential as therapeutic targets in diabetes, versus traditional antidiabetic drugs.
Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. Benvenuti S et al. Journal of endocrinological investigation 2007 OCT

Abstract

Thiazolidinediones (TZD) are widely prescribed for the treatment of Type 2 diabetes. Increased loss of bone mass and a higher incidence of fractures have been associated with the use of this class of drugs in post-menopausal women. In vitro studies performed in rodent cell models indicated that rosiglitazone (RGZ), one of the TZD, inhibited osteoblastogenesis and induced adipogenesis in bone marrow progenitor cells. The objective of the present study was to determine for the first time the RGZ-dependent shift from osteoblastogenesis toward adipogenesis using a human cell model. To this purpose, bone marrow-derived mesenchymal stem cells were characterized and induced to differentiate along osteogenic and adipogenic lineages. We found that the exposure to RGZ potentiated adipogenic differentiation and shifted the differentiation toward an osteogenic phenotype into an adipogenic phenotype, as assessed by the appearance of lipid droplets. Accordingly, RGZ markedly increased the expression of the typical marker of adipogenesis fatty-acid binding protein 4, whereas it reduced the expression of Runx2, a marker of osteoblastogenesis. This is the first demonstration that RGZ counteracts osteoblastogenesis and induces a preferential differentiation into adipocytes in human mesenchymal stem cells.
Peroxisome proliferator-activated receptor gamma-mediated regulation of neural stem cell proliferation and differentiation. Wada K et al. The Journal of biological chemistry 2006 MAY

Abstract

Peroxisome proliferator-activated receptor gamma (PPARgamma) plays an important role in insulin sensitivity, tissue homeostasis, and regulating cellular functions. We found high-level expression of PPARgamma in embryo mouse brain and neural stem cells (NSCs), in contrast to extremely low levels in adult mouse brain. Here, we show that PPARgamma mediates the proliferation and differentiation of murine NSCs via up-regulation of the epidermal growth factor receptor and activation of the ERK pathway. Cell growth rates of NSCs prepared from heterozygous PPARgamma-deficient mouse brains, PPARgamma-RNA-silenced NSCs, and PPARgamma dominant-negative NSCs were significantly decreased compared with those of wild-type NSCs. Physiological concentrations of PPARgamma agonists, rosiglitazone and pioglitazone, stimulated NSC growth, whereas antagonists caused cell death in a concentration-dependent manner via activation of the caspase cascade. The stimulation of cell growth by PPARgamma was associated with a rapid activation of the ERK pathway by phosphorylation and up-regulation of epidermal growth factor receptor and cyclin B protein levels. In contrast, activation of PPARgamma by agonists inhibited the differentiation of NSCs into neurons. The inhibition of differentiation was associated with an activation of STAT3. These data indicate that PPARgamma regulates the development of the central nervous system during early embryogenesis via control of NSC proliferation.