NeuroCult™ Enzymatic Dissociation Kit for Adult CNS Tissue (Mouse and Rat)

Kit for enzymatic dissociation of adult mouse and rat CNS tissue

NeuroCult™ Enzymatic Dissociation Kit for Adult CNS Tissue (Mouse and Rat)

Kit for enzymatic dissociation of adult mouse and rat CNS tissue

From: 277 USD
Catalog #
(Select a product)
Kit for enzymatic dissociation of adult mouse and rat CNS tissue
Add to Wish List

What's Included

  • Tissue Collection Solution, 500 mL
  • Dissociation Solution, 30 mL
  • Inhibition Solution, 30 mL
  • Resuspension Solution, 500 mL

Overview

NeuroCult™ Enzymatic Dissociation Kit for Adult CNS Tissue (Mouse and Rat) is recommended for the enzymatic digestion and dissociation of adult mouse and rat central nervous system (CNS) tissue. NeuroCult™ Enzymatic Dissociation Kit has been optimized so that the entire procedure is reproducible, fast, and yields high cell numbers and viabilities. The resulting single-cell suspension is ready for immediate use in downstream applications.
Subtype
Enzymatic
Cell Type
Neural Stem and Progenitor Cells
Species
Mouse, Rat
Brand
NeuroCult
Area of Interest
Neuroscience, Stem Cell Biology

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Document Type
Technical Manual
Catalog #
05715
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Catalog #
05715
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Catalog #
05715
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Catalog #
05715
Lot #
All
Language
English
Document Type
Safety Data Sheet 4
Catalog #
05715
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Publications (15)

Transplantation of Fas-deficient or wild-type neural stem/progenitor cells (NPCs) is equally efficient in treating experimental autoimmune encephalomyelitis (EAE). Hackett C et al. American journal of translational research 2014

Abstract

Studies have shown that neural stem/progenitor cell (NPC) transplantation is beneficial in experimental autoimmune encephalomyelitis (EAE), an established animal model of multiple sclerosis (MS). It is unclear whether NPCs have the ability to integrate into the host CNS to replace lost cells or if their main mechanism of action is via bystander immunomodulation. Understanding the mechanisms by which NPCs exert their beneficial effects as well as exploring methods to increase post-transplantation survival and differentiation is critical to advancing this treatment strategy. Using the EAE model and Fas-deficient (lpr) NPCs, we investigated the effects of altering the Fas system in NPC transplantation therapy. We show that transplantation of NPCs into EAE mice ameliorates clinical symptoms with greater efficacy than sham treatments regardless of cell type (wt or lpr). NPC transplantation via retro-orbital injections significantly decreased inflammatory infiltrates at the acute time point, with a similar trend at the chronic time point. Both wt and lpr NPCs injected into mice with EAE were able to home to sites of CNS inflammation in the periventricular brain and lumbar spinal cord. Both wt and lpr NPCs have the same capacity for inducing apoptosis of Th1 and Th17 cells, and minimal numbers of NPCs entered the CNS. These cells did not express terminal differentiation markers, suggesting that NPCs exert their effects mainly via bystander peripheral immunomodulation.
Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Birbrair A et al. Experimental cell research 2013 JAN

Abstract

Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice, but their identity, origin, and potential survival in the brain are only vaguely understood. In this work, we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia, including NG2, PDGFRα, O4, NGF receptor (p75), glutamate receptor-1(AMPA), and A2B5 expression. Although these cells exhibit NG2, they do not express other pericyte markers, such as α-SMA or connexin-43, and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents, probably carried through Kir6.1 channels. Given their potential therapeutic application, we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes, we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan.
Methods to culture, differentiate, and characterize neural stem cells from the adult and embryonic mouse central nervous system. Louis SA et al. Methods in molecular biology (Clifton, N.J.) 2013 JAN

Abstract

Since the discovery of neural stem cells (NSC) in the embryonic and adult mammalian central nervous system (CNS), there have been a growing numbers of tissue culture media and protocols to study and functionally characterize NSCs and its progeny in vitro. One of these culture systems introduced in 1992 is referred to as the Neurosphere Assay, and it has been widely used to isolate, expand, differentiate and even quantify NSC populations. Several years later because its application as a quantitative in vitro assay for measuring NSC frequency was limited, a new single-step semisolid based assay, the Neural Colony Forming Cell (NCFC) assay was developed to accurately measure NSC numbers. The NCFC assay allows the discrimination between NSCs and progenitors by the size of colonies they produce (i.e., their proliferative potential). The evolution and continued improvements made to these tissue culture tools will facilitate further advances in the promising application of NSCs for therapeutic use.