IntestiCult™ Organoid Growth Medium (Mouse)

Cell culture medium for establishment and maintenance of mouse intestinal organoids

More Views

IntestiCult™ Organoid Growth Medium (Mouse)

Cell culture medium for establishment and maintenance of mouse intestinal organoids

1 Kit
Catalog #06005
299 USD

Required Products


IntestiCult™ Organoid Growth Medium (Mouse) is a defined, serum-free cell culture medium for efficient establishment and long-term maintenance of mouse intestinal organoids.These organoids, or “mini-guts”, provide a convenient in vitro organotypic culture system for studying both the small and large intestinal epithelium and associated stem cell dynamics. Organoids grown in IntestiCult™ feature a polarized epithelium that contains all of the known cell types of the adult intestinal epithelium. Individual intestinal crypts rapidly form organoids when cultured in IntestiCult™ Organoid Growth Medium (Mouse). Applications of these cultures include studying the development and function of the normal and tumorigenic intestinal epithelium, modeling intestinal disease, and investigating stem cell properties and regenerative therapy approaches. Organoid culture enables convenient in vitro characterization of a system with strong physiological relevance to the adult intestine.
• Convenient, in vitro system that recapitulates the identity and organization of the adult intestinal epithelium, including intra- and intercellular signaling, self-propagating stem cell niche and functional transport into and out of the lumen
• Serum-free and defined medium formulation that delivers consistent results
• Enables generation of intestinal organoids in less than one week
• Simple format and easy-to-use protocol
  • IntestiCult™ OGM Mouse Basal Medium, 90 mL
  • IntestiCult™ OGM Mouse Supplement 1, 5 mL
  • IntestiCult™ OGM Mouse Supplement 2, 5 mL
Specialized Media
Cell Type:
Intestinal Cells
Cell Culture; Differentiation; Expansion; Maintenance; Organoid Culture
Area of Interest:
Cancer Research; Disease Modeling; Drug Discovery and Toxicity Testing; Epithelial Cell Biology; Stem Cell Biology

Scientific Resources

Educational Materials

Brochure Organoids
Load More Educational Materials

Product Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Data and Publications


Journal of experimental {\&} clinical cancer research : CR 2020 jan

MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway.

G. Lou et al.


BACKGROUND MiR-199a-3p (miR-199a) can enhance the chemosensitivity of hepatocellular carcinoma (HCC). Because of the easy degradation of miRNA by direct infusion, effective vehicle-mediated delivery of miR-199a may represent a new strategy for improving HCC chemotherapy. Considering mesenchymal stem cell (MSC)-derived exosomes as promising natural nanovectors for drug and molecule delivery, we aimed to determine whether exosomes from adipose tissue-derived MSCs (AMSCs) could be used to deliver miR-199a and improve HCC chemosensitivity. METHODS MiR-199a-modified AMSCs (AMSC-199a) were constructed by miR-199a lentivirus infection and puromycin selection. MiR-199-modified exosomes (AMSC-Exo-199a) were isolated from the supernatant of AMSC-199a and were assessed by transmission electron microscopy, nanoparticle tracking analysis, and flow cytometry analysis. The expression levels of miR-199a in HCC samples, AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The effects of AMSC-Exo-199a on HCC chemosensitivity were determined by cell proliferation and apoptosis assays and by i.v. injection into orthotopic HCC mouse models with doxorubicin treatment. MTOR, p-4EBP1 and p-70S6K levels in HCC cells and tissues were quantified by Western blot. RESULTS AMSC-Exo-199a had the classic characteristics of exosomes and could effectively mediate miR-199a delivery to HCC cells. Additionally, AMSC-Exo-199a significantly sensitized HCC cells to doxorubicin by targeting mTOR and subsequently inhibiting the mTOR pathway. Moreover, i.v.-injected AMSC-Exo-199a could distribute to tumor tissue and markedly increased the effect of Dox against HCC in vivo. CONCLUSIONS AMSC-Exo-199a can be an effective vehicle for miR-199a delivery, and they effectively sensitized HCC to chemotherapeutic agents by targeting mTOR pathway. AMSC-Exo-199a administration may provide a new strategy for improving HCC chemosensitivity.
Free radical biology {\&} medicine 2020 jan

Mitochondrial dysfunction and oxidative stress in bone marrow stromal cells induced by daunorubicin leads to DNA damage in hematopoietic cells.

Y. Li et al.


Cytotoxic chemotherapies could cause the dysregulation of hematopoiesis and even put patients at increased risk of hematopoietic malignancy. Therapy-related leukemia is mainly caused by cytotoxic chemotherapy-induced genetic mutations in hematopoietic stem/progenitor cells (HSPCs). In addition to the intrinsic mechanism, some extrinsic events occurring in the bone marrow (BM) microenvironment are also possible mechanisms involved in genetic alteration. In the present study, we investigated the damage to BM stromal cells induced by a chemotherapy drug, daunorubicin (DNR) and further identified the DNA damage in hematopoietic cells caused by drug-treated stromal cells. It was found that treatment with DNR in mice caused a temporary reduction in cell number in each BM stromal cell subpopulation and the impairment of clonal growth potential in BM stromal cells. DNR treatment led to a tendency of senescence, generation of intracellular reactive oxygen species, production of cytokines and chemokines, and dysfunction of mitochondrial in stromal cells. Transcriptome microarray data and gene ontology (GO) or gene set enrichment analysis (GSEA) showed that differentially expressed genes that were down-regulated in response to DNR treatment were significantly enriched in mitochondrion function, and negative regulators of reactive oxygen species. Surprisingly, it was found that DNR-treated stromal cells secreted high levels of H2O2 into the culture supernatant. Furthermore, coculture of hematopoietic cells with DNR-treated stromal cells led to the accumulation of DNA damage as determined by the levels of histone H2AX phosphorylation and 8-oxo-2'-deoxyguanosine in hematopoietic cells. Overall, our results suggest that DNR-induced BM stromal cell damage can lead to genomic instability in hematopoietic cells.
Experimental cell research 2019 sep

Physiological expression of miR-130a during differentiation of CD34+ human hematopoietic stem cells results in the inhibition of monocyte differentiation.

F. Mammoli et al.


MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, thereby determining their degradation or inhibiting translation. They are involved in processes such as proliferation, differentiation and apoptosis by fine-tuning the expression of genes underlying such events. The expression of specific miRNAs is involved in hematopoietic differentiation and their deregulation contributes to the development of hematopoietic malignancies such as acute myeloid leukemia (AML). miR-130a is over-expressed in AML. Here we show that miR-130a is physiologically expressed in myeloblasts and down-regulated during monocyte differentiation. Gain- and loss-of-function experiments performed on CD34+ human hematopoietic stem cells confirmed that expression of miR-130a inhibits monocyte differentiation by interfering with the expression of key transcription factors HOXA10, IRF8, KLF4, MAFB and PU-1. The data obtained in this study highlight that the correct modulation of miR-130a is necessary for normal differentiation to occur and confirming that deregulation of this miRNA might underlie the differentiation block occurring in AML.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2019 sep

Serotonin 3 receptor signaling regulates 5-fluorouracil-mediated apoptosis indirectly via TNF-alpha production by enhancing serotonin release from enterochromaffin cells.

S. Mikawa et al.


Antagonists of the 5-hydroxytryptamine (serotonin) 3 receptor (5-HT3R) have anti-inflammatory and anti-apoptotic activities, but the detailed, underlying mechanisms are not well understood. We focused on anti-apoptotic activities via 5-HT3R signaling to clarify the underlying mechanisms. Mice were administered 5-fluorouracil (5-FU), which induced apoptosis in intestinal epithelial cells. Coadministration with 5-HT3R antagonists or agonists tended to decrease or increase the number of apoptotic cells, respectively. In serotonin 3A receptor (5-HT3AR) null (HTR3A-/-) mice, the number of apoptotic cells induced by 5-FU was decreased compared with that in wild-type (WT) mice. Bone marrow (BM) transplantation was performed to determine if BM-derived immune cells regulated 5-FU-induced apoptosis, but they were found to be unrelated to this process. Data from 5-HT3AR/enhanced green fluorescent protein reporter mice revealed that 50{\%} of enterochromaffin (EC) cells expressed 5-HT3AR, but the number of apoptotic cells induced by 5-FU in the intestinal crypt organoids of HTR3A-/- mice was not altered compared with WT mice. In contrast, plasma 5-HT concentrations in WT mice but not in HTR3A-/- mice administered 5-FU were increased significantly. In conclusion, 5-HT3R signaling may enhance 5-HT release, possibly from EC cells intravascularly, or paracrine, resulting in increases in plasma 5-HT concentration, which in turn, enhances apoptotic activities induced by 5-FU.-Mikawa, S., Kondo, M., Kaji, N., Mihara, T., Yoshitake, R., Nakagawa, T., Takamoto, M., Nishimura, R., Shimada, S., Ozaki, H., Hori, M. Serotonin 3 receptor signaling regulates 5-fluorouracil-mediated apoptosis indirectly via TNF-alpha production by enhancing serotonin release from enterochromaffin cells.
The Journal of steroid biochemistry and molecular biology 2019 sep

Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease.

H. Li et al.


Glucocorticoids (GCs) play an important role in controlling acute graft-versus-host disease (aGvHD), a frequent complication of allogeneic hematopoietic stem cell transplantation. The anti-inflammatory activity of GCs is mainly ascribed to the modulation of T cells and macrophages, for which reason a genetically induced GC resistance of either of these cell types causes aggravated aGvHD. Since only a few genes are currently known that are differentially regulated under these conditions, we analyzed the expression of 54 candidate genes in the inflamed small intestine of mice suffering from aGvHD when either allogeneic T cells or host myeloid cells were GC resistant using a microfluidic dynamic array platform for high-throughput quantitative PCR. The majority of genes categorized as cytokines (e.g. Il2, Il6), chemokines (e.g. Ccl2, Cxcl1), cell surface receptors (e.g. Fasl, Ctla4) and intracellular molecules (e.g. Dusp1, Arg1) were upregulated in mice transplanted with GC resistant allogeneic T cells. Moreover, the expression of several genes linked to energy metabolism (e.g. Glut1) was altered. Surprisingly, mice harboring GC resistant myeloid cells showed almost no changes in gene expression despite their fatal disease course after aGvHD induction. To identify additional genes in the inflamed small intestine that were affected by a GC resistance of allogeneic T cells, we performed an RNAseq analysis, which uncovered more than 500 differentially expressed transcripts (e.g. Cxcr6, Glut3, Otc, Aoc1, Il1r1, Sphk1) that were enriched for biological processes associated with inflammation and tissue disassembly. The changes in gene expression could be confirmed during full-blown disease but hardly any of them in the preclinical phase using high-throughput quantitative PCR. Further analysis of some of these genes revealed a highly selective expression pattern in T cells, intestinal epithelial cells and macrophages, which correlated with their regulation during disease progression. Collectively, we identified an altered gene expression profile caused by GC resistance of transplanted allogeneic T cells, which could help to define new targets for aGvHD therapy.