Reprogramming technology differentiates specialized cells of a specific cell type to be converted to another cell type with different functions, either through the production of induced pluripotent stem cells (iPSCs) or through direct reprogramming. This technology has the potential to generate models of diseases, allowing researchers to study disease mechanisms in an in vitro setting.

Understanding the applications of iPSC-derived neural cells

- **Neurons and hippocampal iPSCs**
- **Motor neurons**
- **Forebrain neurons**

Phenotype

- EXPAND NPCs with STEMdiff™ Neural Progenitor Medium (Catalog #05833)
- SMN1
- FXN

More representative of the brain's extracellular environment

iPSC-derived progeny

- ATXN3

Gene Expression

- **RefSeq**
- **HGNC**
- **LocusLink**

Gene Regulation

- epigenetic changes influence gene expression

Cell Culture

- iPSC-induced neurons versus other non-human primates

Clinical Trials

- iPSC-derived neurons for some neurological diseases

Cell-Reprogramming Technology

- Can be adapted to study related pathways and cellular phenotypes in reproducible and scalable bioassays

Human iPSC-derived Models of Neurodegenerative and Psychiatric Disorders

<table>
<thead>
<tr>
<th>Disease</th>
<th>Mutated genes</th>
<th>iPSC-derived phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer disease</td>
<td>APP, PS1, PS2</td>
<td>Neuronal cell death, amyloid plaques, hyperphosphorylated tau</td>
</tr>
<tr>
<td>Parkinson disease</td>
<td>SNCA, LRRK2</td>
<td>Dopaminergic neuron loss, Lewy body formation</td>
</tr>
<tr>
<td>Huntington disease</td>
<td>ITT</td>
<td>Neuron loss, atrophy, striatal atrophy</td>
</tr>
<tr>
<td>Cerebellar ataxia</td>
<td>ATXN3, ATXN7</td>
<td>Neuron loss, atrophy, cerebellar atrophy</td>
</tr>
</tbody>
</table>

Challenges and future directions

- Modelling polygenic and multifactorial CNS disorders
- Integrating methods to differentiate iPSCs into the relevant cell types involved in neurological disease with reproducible and scalable platforms

Acknowledgements

- The authors gratefully acknowledge the support of the National Institutes of Health (grant GM103512), the Robert and Mary Jane McGaw Foundation, and the Robert J. and Florence S. McFarland Foundation.

References

High-throughput phenotypic screens using iPSC-derived cells

- Based on a novel platform for data analysis that allows the generation of disease models in different species

Identiﬁcation of quantifiable disease biomarkers in iPSCs derived from patients and controls

Ongoing trials

- Based on human iPSC-derived cell models