Showing 1 - 5 of 5 results for "stemdiff cardiomyocyte"
Products 1 to 12 of 220 total
- ReferenceH. Poulin et al. (aug 2019) Biochemical and biophysical research communications 516 1 222--228
Differentiation of lymphoblastoid-derived iPSCs into functional cardiomyocytes, neurons and myoblasts.
Human induced pluripotent stem cells (hiPSCs) are a valuable tool for investigating complex cellular and molecular events that occur in several human diseases. Importantly, the ability to differentiate hiPSCs into any human cell type provides a unique way for investigating disease mechanisms such as complex mental health diseases. The in vitro transformation of human lymphocytes into lymphoblasts (LCLs) using the Epstein-Barr virus (EBV) has been the main method for generating immortalized human cell lines for half a century. However, the derivation of iPSCs from LCLs has emerged as an alternative source from which these cell lines can be generated. We show that iPSCs derived from LCLs using the Sendai virus procedure can be successfully differentiated into cardiomyocytes, neurons, and myotubes that express neuron- and myocyte-specific markers. We further show that these cardiac and neuronal cells are functional and generate action potentials that are required for cell excitability. We conclude that the ability to differentiate LCLs into neurons and myocytes will increase the use of LCLs in the future as a potential source of cells for modelling a number of diseases. View PublicationCatalog #: Product Name: 05010 STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit Catalog #: 05010 Product Name: STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit - ReferenceL. Ye et al. (may 2020) JACC. Basic to translational science 5 5 447--460
Role of Blood Oxygen Saturation During Post-Natal Human Cardiomyocyte Cell Cycle Activities.
Blood oxygen saturation (SaO2) is one of the most important environmental factors in clinical heart protection. This study used human heart samples and human induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) to assess how SaO2 affects human CM cell cycle activities. The results showed that there were significantly more cell cycle markers in the moderate hypoxia group (SaO2: 75{\%} to 85{\%}) than in the other 2 groups (SaO2 {\textless}75{\%} or {\textgreater}85{\%}). In iPSC-CMs 15{\%} and 10{\%} oxygen (O2) treatment increased cell cycle markers, whereas 5{\%} and rapid change of O2 decreased the markers. Moderate hypoxia is beneficial to the cell cycle activities of post-natal human CMs. View PublicationCatalog #: Product Name: 05010 STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit Catalog #: 05010 Product Name: STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit - ReferenceRajasingh S et al. (AUG 2015) PloS one 10 8 e0134093
Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility.
Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with<88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs. View PublicationCatalog #: Product Name: 05832 STEMdiff™ Neural Rosette Selection Reagent 05833 STEMdiff™ Neural Progenitor Medium 05835 STEMdiff™ Neural Induction Medium Catalog #: 05832 Product Name: STEMdiff™ Neural Rosette Selection Reagent Catalog #: 05833 Product Name: STEMdiff™ Neural Progenitor Medium Catalog #: 05835 Product Name: STEMdiff™ Neural Induction Medium - ReferencePasquier J et al. (JUN 2017) The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 36 6 684--693
Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes.
BACKGROUND Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. METHODS We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4(+)ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. RESULTS After 8 days in culture, 94% ± 6% of the NKX2-5GFP(+) cells were beating when hESCs embryonic bodies were plated on E4(+)ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP(+) cardiomyocytes were close to the E4(+)ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. CONCLUSIONS The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. View PublicationCatalog #: Product Name: 85850 mTeSR™1 05271 STEMdiff™ APEL™2-LI Medium Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 05271 Product Name: STEMdiff™ APEL™2-LI Medium - ReferenceTomov ML et al. (DEC 2016) Scientific Reports 6 1 37637
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential. View PublicationCatalog #: Product Name: 05835 STEMdiff™ Neural Induction Medium 08581 STEMdiff™ SMADi Neural Induction Kit Catalog #: 05835 Product Name: STEMdiff™ Neural Induction Medium Catalog #: 08581 Product Name: STEMdiff™ SMADi Neural Induction Kit
Products 1 to 12 of 220 total
Shop By