J. Renkawitz et al. (apr 2019)
Nature 568 7753 546--550
Nuclear positioning facilitates amoeboid migration along the path of least resistance.
During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1-3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some-but not all-cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.
View Publication
Catalog #:
Product Name:
19848
EasySep™ Mouse Pan-Naïve T Cell Isolation Kit
19659
EasySep™ Direct Human Pan-Granulocyte Isolation Kit
Catalog #:
19848
Product Name:
EasySep™ Mouse Pan-Naïve T Cell Isolation Kit
Catalog #:
19659
Product Name:
EasySep™ Direct Human Pan-Granulocyte Isolation Kit
Reference
B. Fregin et al. ( 2019)
Nature communications 10 1 415
High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry.
In life sciences, the material properties of suspended cells have attained significance close to that of fluorescent markers but with the advantage of label-free and unbiased sample characterization. Until recently, cell rheological measurements were either limited by acquisition throughput, excessive post processing, or low-throughput real-time analysis. Real-time deformability cytometry expanded the application of mechanical cell assays to fast on-the-fly phenotyping of large sample sizes, but has been restricted to single material parameters as the Young's modulus. Here, we introduce dynamic real-time deformability cytometry for comprehensive cell rheological measurements at up to 100 cells per second. Utilizing Fourier decomposition, our microfluidic method is able to disentangle cell response to complex hydrodynamic stress distributions and to determine viscoelastic parameters independent of cell shape. We demonstrate the application of our technology for peripheral blood cells in whole blood samples including the discrimination of B- and CD4+ T-lymphocytes by cell rheological properties.
View Publication
Catalog #:
Product Name:
19157
EasySep™ Human Memory CD4+ T Cell Enrichment Kit
19659
EasySep™ Direct Human Pan-Granulocyte Isolation Kit
Catalog #:
19157
Product Name:
EasySep™ Human Memory CD4+ T Cell Enrichment Kit
Catalog #:
19659
Product Name:
EasySep™ Direct Human Pan-Granulocyte Isolation Kit
StemCell Technologies Inc. and affiliates ("STEMCELL Technologies") does not
share your email address with third parties. StemCell Technologies Inc. will use your email address to
confirm your identity and send you newsletters, transaction-related emails, promotional and customer
service emails in accordance with our privacy policy. You can change
your email preferences at any time.