Showing 1 - 12 of 115 results for "05751"
Products 1 to 12 of 25 total
- ReferenceK. M. Wilson et al. ( 2019) SLAS technology 24 1 28--40
Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy.
Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceY. Wang et al. ( 2019) Nature communications 10 1 943
G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma.
Mutational inactivation of ATRX ($\alpha$-thalassemia mental retardation X-linked) represents a defining molecular alteration in large subsets of malignant glioma. Yet the pathogenic consequences of ATRX deficiency remain unclear, as do tractable mechanisms for its therapeutic targeting. Here we report that ATRX loss in isogenic glioma model systems induces replication stress and DNA damage by way of G-quadruplex (G4) DNA secondary structure. Moreover, these effects are associated with the acquisition of disease-relevant copy number alterations over time. We then demonstrate, both in vitro and in vivo, that ATRX deficiency selectively enhances DNA damage and cell death following chemical G4 stabilization. Finally, we show that G4 stabilization synergizes with other DNA-damaging therapies, including ionizing radiation, in the ATRX-deficient context. Our findings reveal novel pathogenic mechanisms driven by ATRX deficiency in glioma, while also pointing to tangible strategies for drug development. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceR. Su et al. ( 2018) Cell 172 2-Jan 90--105.e23
R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling.
R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceZ. Sharifi et al. ( 2019) Clinical cancer research : an official journal of the American Association for Cancer Research 25 24 7594--7608
Mechanisms and Antitumor Activity of a Binary EGFR/DNA-Targeting Strategy Overcomes Resistance of Glioblastoma Stem Cells to Temozolomide.
PURPOSE Glioblastoma (GBM) is a fatal primary malignant brain tumor. GBM stem cells (GSC) contribute to resistance to the DNA-damaging chemotherapy, temozolomide. The epidermal growth factor receptor (EGFR) displays genomic alterations enabling DNA repair mechanisms in half of GBMs. We aimed to investigate EGFR/DNA combi-targeting in GBM. EXPERIMENTAL DESIGN ZR2002 is a combi-molecule" designed to inflict DNA damage through its chlorethyl moiety and induce irreversible EGFR tyrosine kinase inhibition. We assessed its in vitro efficacy in temozolomide-resistant patient-derived GSCs mesenchymal temozolomide-sensitive and resistant in vivo-derived GSC sublines and U87/EGFR isogenic cell lines stably expressing EGFR/wild-type or variant III (EGFRvIII). We evaluated its antitumor activity in mice harboring orthotopic EGFRvIII or mesenchymal TMZ-resistant GSC tumors. RESULTS ZR2002 induced submicromolar antiproliferative effects and inhibited neurosphere formation of all GSCs with marginal effects on normal human astrocytes. ZR2002 inhibited EGF-induced autophosphorylation of EGFR downstream Erk1/2 phosphorylation increased DNA strand breaks and induced activation of wild-type p53; the latter was required for its cytotoxicity through p53-dependent mechanism. ZR2002 induced similar effects on U87/EGFR cell lines and its oral administration significantly increased survival in an orthotopic EGFRvIII mouse model. ZR2002 improved survival of mice harboring intracranial mesenchymal temozolomide-resistant GSC line decreased EGFR Erk1/2 and AKT phosphorylation and was detected in tumor brain tissue by MALDI imaging mass spectrometry. CONCLUSIONS These findings provide the molecular basis of binary EGFR/DNA targeting and uncover the oral bioavailability blood-brain barrier permeability and antitumor activity of ZR2002 supporting potential evaluation of this first-in-class drug in recurrent GBM." View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceQ. Li et al. ( 2018) Scientific reports 8 1 3531
Scalable Culturing of Primary Human Glioblastoma Tumor-Initiating Cells with a Cell-Friendly Culture System.
Glioblastoma is the most aggressive and deadly brain cancer. There is growing interest to develop drugs that specifically target to glioblastoma tumor-initiating cells (TICs). However, the cost-effective production of large numbers of high quality glioblastoma TICs for drug discovery with current cell culturing technologies remains very challenging. Here, we report a new method that cultures glioblastoma TICs in microscale alginate hydrogel tubes (or AlgTubes). The AlgTubes allowed long-term culturing ({\~{}}50 days, 10 passages) of glioblastoma TICs with high growth rate ({\~{}}700-fold expansion/14 days), high cell viability and high volumetric yield ({\~{}}3.0 × 108 cells/mL) without losing the stem cell properties, all offered large advancements over current culturing methods. This method can be applied for the scalable production of glioblastoma TICs at affordable cost for drug discovery. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceJ. M. Crook and E. Tomaskovic-Crook ( 2017) Methods in molecular biology (Clifton, N.J.) 1590 199--206
Culturing and Cryobanking Human Neural Stem Cells.
The discovery and study of human neural stem cells has advanced our understanding of human neurogenesis, and the development of novel therapeutics based on neural cell replacement. Here, we describe methods to culture and cryopreserve human neural stem cells (hNSCs) for expansion and banking. Importantly, the protocols ensure that the multipotency of hNSCs is preserved to enable differentiation to neurons and supporting neuroglia. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceC. P. Couturier et al. (jul 2020) Nature communications 11 1 3406
Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy.
Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells. We find a conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We also find that this progenitor population contains the majority of the cancer's cycling cells, and, using RNA velocity, is often the originator of the other cell types. Finally, we show that this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer stem cells. Our analyses show that normal brain development reconciles glioblastoma development, suggests a possible origin for glioblastoma hierarchy, and helps to identify cancer stem cell-specific targets. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceS. Brabetz et al. ( 2018) Nature medicine 24 11 1752--1761
A biobank of patient-derived pediatric brain tumor models.
Brain tumors are the leading cause of cancer-related death in children. Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors that may lead to novel therapeutic strategies. To evaluate new treatments, better preclinical models adequately reflecting the biological heterogeneity are needed. Through the Children's Oncology Group ACNS02B3 study, we have generated and comprehensively characterized 30 patient-derived orthotopic xenograft models and seven cell lines representing 14 molecular subgroups of pediatric brain tumors. Patient-derived orthotopic xenograft models were found to be representative of the human tumors they were derived from in terms of histology, immunohistochemistry, gene expression, DNA methylation, copy number, and mutational profiles. In vivo drug sensitivity of targeted therapeutics was associated with distinct molecular tumor subgroups and specific genetic alterations. These models and their molecular characterization provide an unprecedented resource for the cancer community to study key oncogenic drivers and to evaluate novel treatment strategies. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceD. Bakhshinyan et al. ( 2019) Oncogene 38 10 1702--1716
BMI1 is a therapeutic target in recurrent medulloblastoma.
Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20{\%} of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80{\%}, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceR. Gao et al. (dec 2019) Pediatric surgery international 35 12 1363--1368
A comparison of exosomes derived from different periods breast milk on protecting against intestinal organoid injury.
AIM OF THE STUDY Human breast milk reduces the risk and severity of necrotizing enterocolitis (NEC). Exosomes are extracellular vesicles (EVs) found in high concentrations in milk, and they mediate intercellular communication and immune responses. The aim of this study is to compare the protective effects of exosomes that are derived from different time periods of breast milk production against intestinal injury using an ex vivo intestinal organoid model. METHODS Colostrum, transitional and mature breast milk samples from healthy lactating mothers were collected. Exosomes were isolated using serial ultracentrifugation and filtration. Exosomes' presence was confirmed using transmission electron microscopy (TEM) and western blot. To form the intestinal organoids, terminal ileum was harvested from neonatal mice pups at postnatal day 9, crypts were isolated and organoids were cultured in matrigel. Organoids were either cultured with exposure to lipopolysaccharide (LPS), or in treatment groups where both LPS and exosomes were added in the culturing medium. Inflammatory markers and organoids viability were evaluated. MAIN RESULTS Human milk-derived exosomes were successfully isolated and characterized. LPS administration reduced the size of intestinal organoids, induced inflammation through increasing TNF$\alpha$ and TLR4 expression, and stimulated intestinal regeneration. Colostrum, transitional and mature human milk-derived exosome treatment all prevented inflammatory injury, while exosomes derived from colostrum were most effective at reducing inflammatory cytokine. CONCLUSIONS Human breast milk-derived exosomes were able to protect intestine organoids against epithelial injury induced by LPS. Colostrum exosomes offer the best protective effect among the breast-milk derived exosomes. Human milk exosomes can be protective against the development of intestinal injury such as that seen in NEC. View PublicationCatalog #: Product Name: 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - Product Information Sheet
Catalog #: Lot #: Language Product Name: 05751 All English NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05751 Lot #: All Language English Product Name: NeuroCult™ NS-A Proliferation Kit (Human) - ReferenceHothi P et al. (OCT 2012) Oncotarget 3 10 1124--36
High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells
Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF-Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM. View PublicationCatalog #: Product Name: 05750 NeuroCult™ NS-A Basal Medium (Human) 05751 NeuroCult™ NS-A Proliferation Kit (Human) Catalog #: 05750 Product Name: NeuroCult™ NS-A Basal Medium (Human) Catalog #: 05751 Product Name: NeuroCult™ NS-A Proliferation Kit (Human)
Products 1 to 12 of 25 total
Shop By
Filter Results
- Resource Type
- Product Information Sheet 1 item
- Reference 112 items
- Safety Data Sheet 1 item
- Technical Manual 1 item
- Product Type
- Cell Culture Media and Supplements 1 item
- Area of Interest
- Angiogenic Cell Research 1 item
- Cancer 20 items
- Drug Discovery and Toxicity Testing 1 item
- Neuroscience 99 items
- Stem Cell Biology 2 items
- Brand
- ALDEFLUOR 1 item
- IntestiCult 1 item
- NeuroCult 110 items
- TeSR 1 item
- Cell Type
- Brain Tumor Stem Cells 65 items
- Cancer Cells and Cell Lines 14 items
- Neural Stem and Progenitor Cells 82 items
- Pluripotent Stem Cells 1 item