You searched for: 07174
-
ReferenceYang Y et al. (MAY 2015) Proceedings of the National Academy of Sciences of the United States of America 112 18 E2337--------46
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo. View PublicationCatalog #:Product Name:05850mTeSR™107923Dispase (1 U/mL)07174Gentle Cell Dissociation Reagent85850mTeSR™1 -
ReferenceTeSlaa T et al. (SEP 2016) Cell metabolism 24 3 485--493
$$-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells.
Pluripotent stem cells (PSCs) can self-renew or differentiate from naive or more differentiated, primed, pluripotent states established by specific culture conditions. Increased intracellular $$-ketoglutarate ($$KG) was shown to favor self-renewal in naive mouse embryonic stem cells (mESCs). The effect of $$KG or $$KG/succinate levels on differentiation from primed human PSCs (hPSCs) or mouse epiblast stem cells (EpiSCs) remains unknown. We examined primed hPSCs and EpiSCs and show that increased $$KG or $$KG-to-succinate ratios accelerate, and elevated succinate levels delay, primed PSC differentiation. $$KG has been shown to inhibit the mitochondrial ATP synthase and to regulate epigenome-modifying dioxygenase enzymes. Mitochondrial uncoupling did not impede $$KG-accelerated primed PSC differentiation. Instead, $$KG induced, and succinate impaired, global histone and DNA demethylation in primed PSCs. The data support $$KG promotion of self-renewal or differentiation depending on the pluripotent state. View PublicationCatalog #:Product Name:05850mTeSR™105940TeSR™-E8™05946TeSR™-E607174Gentle Cell Dissociation Reagent85850mTeSR™1 -
ReferenceNoormohammadi A et al. (NOV 2016) Nature Communications 7 13649
Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan
Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and, therefore, are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex, a chaperonin that facilitates the folding of 10% of the proteome. We find that ectopic expression of a single subunit (CCT8) is sufficient to increase TRiC/CCT assembly. Moreover, increased TRiC/CCT complex is required to avoid aggregation of mutant Huntingtin protein. We further show that increased expression of CCT8 in somatic tissues extends Caenorhabditis elegans lifespan in a TRiC/CCT-dependent manner. Ectopic expression of CCT8 also ameliorates the age-associated demise of proteostasis and corrects proteostatic deficiencies in worm models of Huntington's disease. Our results suggest proteostasis is a common principle that links organismal longevity with hESC immortality. View PublicationCatalog #:Product Name:05850mTeSR™107174Gentle Cell Dissociation Reagent07920ACCUTASE™85850mTeSR™105835STEMdiff™ Neural Induction Medium -
ReferenceS. Bell et al. (JUL 2018) Stem cell reports 11 1 183--196
Disruption of GRIN2B Impairs Differentiation in Human Neurons.
Heterozygous loss-of-function mutations in GRIN2B, a subunit of the NMDA receptor, cause intellectual disability and language impairment. We developed clonal models of GRIN2B deletion and loss-of-function mutations in a region coding for the glutamate binding domain in human cells and generated neurons from a patient harboring a missense mutation in the same domain. Transcriptome analysis revealed extensive increases in genes associated with cell proliferation and decreases in genes associated with neuron differentiation, a result supported by extensive protein analyses. Using electrophysiology and calcium imaging, we demonstrate that NMDA receptors are present on neural progenitor cells and that human mutations in GRIN2B can impair calcium influx and membrane depolarization even in a presumed undifferentiated cell state, highlighting an important role for non-synaptic NMDA receptors. It may be this function, in part, which underlies the neurological disease observed in patients with GRIN2B mutations. View PublicationCatalog #:Product Name:05833STEMdiff™ Neural Progenitor Medium05872ReLeSR™05910TeSR™-E7™07174Gentle Cell Dissociation Reagent05790BrainPhys™ Neuronal Medium85850mTeSR™1 -
ReferenceM. Robinson et al. (apr 2019) Biosensors 9 2
A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues.
We have designed and validated a set of robust and non-toxic protocols for directly evaluating the properties of engineered neural tissue. These protocols characterize the mechanical properties of engineered neural tissues and measure their electrophysical activity. The protocols obtain elastic moduli of very soft fibrin hydrogel scaffolds and voltage readings from motor neuron cultures. Neurons require soft substrates to differentiate and mature, however measuring the elastic moduli of soft substrates remains difficult to accurately measure using standard protocols such as atomic force microscopy or shear rheology. Here we validate a direct method for acquiring elastic modulus of fibrin using a modified Hertz model for thin films. In this method, spherical indenters are positioned on top of the fibrin samples, generating an indentation depth that is then correlated with elastic modulus. Neurons function by transmitting electrical signals to one another and being able to assess the development of electrical signaling serves is an important verification step when engineering neural tissues. We then validated a protocol wherein the electrical activity of motor neural cultures is measured directly by a voltage sensitive dye and a microplate reader without causing damage to the cells. These protocols provide a non-destructive method for characterizing the mechanical and electrical properties of living spinal cord tissues using novel biosensing methods. View PublicationCatalog #:Product Name:05832STEMdiff™ Neural Rosette Selection Reagent05833STEMdiff™ Neural Progenitor Medium05835STEMdiff™ Neural Induction Medium07174Gentle Cell Dissociation Reagent27215Reversible Strainers34811AggreWell™80034811AggreWell™80005835STEMdiff™ Neural Induction Medium05990TeSR™-E8™ -
ReferenceRobinson M et al. (AUG 2016) Stem Cell Reviews and Reports 12 4 476--483
Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells
Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells. View PublicationCatalog #:Product Name:05832STEMdiff™ Neural Rosette Selection Reagent05833STEMdiff™ Neural Progenitor Medium05838STEMdiff™ Neural Progenitor Freezing Medium05872ReLeSR™05940TeSR™-E8™07174Gentle Cell Dissociation Reagent07180Vitronectin XF™36254DMEM/F-12 with 15 mM HEPES07930CryoStor® CS1027845AggreWell™05835STEMdiff™ Neural Induction Medium08581STEMdiff™ SMADi Neural Induction Kit -
ReferenceHaraguchi Y et al. (DEC 2015) Journal of Tissue Engineering and Regenerative Medicine 9 12 1363--1375
Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.
In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. View PublicationCatalog #:Product Name:05850mTeSR™107174Gentle Cell Dissociation Reagent60002Anti-Mouse CD11c Antibody, Clone N41860062Anti-Human SSEA-4 Antibody, Clone MC-813-7085850mTeSR™1