Showing 1 - 11 of 11 results for "73642"
- ReferenceJohnson JL and Maddipati KR (JUN 1998) Prostaglandins & other lipid mediators 56 2-3 131--43
Paradoxical effects of resveratrol on the two prostaglandin H synthases.
Prostaglandin H synthase (PGHS) is the primary enzyme responsible for the biosynthesis of prostaglandins and thromboxanes. Of the two isoenzymes of PGHS, PGHS-1 is constitutively expressed and PGHS-2 is inducible by mitogens or other inflammatory stimuli. Constitutive expression of PGHS-2 in neoplastic tissues has been implicated in carcinogenesis. Resveratrol, a lignan, was recently shown to be an anticarcinogen that selectively inhibits PGHS-1. In vitro experiments to resolve these seemingly paradoxical observations revealed that resveratrol is not only an inhibitor of PGHS-1 but also is an activator of PGHS-2. Resveratrol non-competitively inhibited PGHS-1 with a K1 of 26 +/- 2 microM but enhanced the PGHS-2 activity nearly twofold. Additionally, resveratrol did not serve as a reducing co-substrate for the peroxidase activities of either enzyme despite being an easily oxidizable phenolic compound. Resveratrol inhibited the peroxidase activity of PGHS-1 (IC50 = 15 microM) better than that of PGHS-2 (IC50 = textgreater 200 microM). Inhibition of the perxidase activity but not the cyclooxygenase activity of PGHS-2 resulted in the production of PGG2 from arachidonic acid. A plausible relationship between these observation and the anticarcinogenic activity of resveratrol is discussed. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceFiala ES et al. (SEP 1996) Experientia 52 9 922--6
(-)-Epigallocatechin gallate, a polyphenolic tea antioxidant, inhibits peroxynitrite-mediated formation of 8-oxodeoxyguanosine and 3-nitrotyrosine.
Reaction with peroxynitrite at pH 7.4 and 37 degrees C was found to increase the 8-oxodeoxyguanosine levels in calf thymus DNA 35- 38-fold. This oxidation of deoxyguanosine, as well as the peroxynitrite-mediated nitration of tyrosine to 3-nitrotyrosine, was significantly inhibited by ascorbic acid, glutathione and (-)-epigallocatechin gallate, a polyphenolic antioxidant present in tea. For 50% inhibition of the oxidation of deoxyguanosine to 8-oxodeoxyguanosine, 1.1, 7.6 or 0.25 mM ascorbate, glutathione or (-)-epigallocatechin gallate, respectively, was required. For 50% inhibition of tyrosine nitration, the respective concentrations were 1.4, 4.6 or 0.11 mM. Thus, (-)-epigallocatechin gallate is a significantly better inhibitor of both reactions than either ascorbate or glutathione. Reaction of (-)-epigallocatechin gallate with peroxynitrite alone resulted in the formation of a number of products. Ultraviolet spectra of two of these suggest that the tea polyphenol and/or its oxidation products are nitrated by peroxynitrite. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceMiller NJ and Rice-Evans CA (DEC 1995) Clinical chemistry 41 12 Pt 1 1789
Antioxidant activity of resveratrol in red wine.
Catalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceDu G-J et al. (NOV 2012) Nutrients 4 11 1679--91
Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea.
Green tea is a popular drink consumed daily by millions of people around the world. Previous studies have shown that some polyphenol compounds from green tea possess anticancer activities. However, systemic evaluation was limited. In this study, we determined the cancer chemopreventive potentials of 10 representative polyphenols (caffeic acid, CA; gallic acid, GA; catechin, C; epicatechin, EC; gallocatechin, GC; catechin gallate, CG; gallocatechin gallate, GCG; epicatechin gallate, ECG; epigallocatechin, EGC; and epigallocatechin gallate, EGCG), and explored their structure-activity relationship. The effect of the 10 polyphenol compounds on the proliferation of HCT-116 and SW-480 human colorectal cancer cells was evaluated using an MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with propidium iodide (PI)/RNase or annexin V/PI. Among the 10 polyphenols, EGCG showed the most potent antiproliferative effects, and significantly induced cell cycle arrest in the G1 phase and cell apoptosis. When the relationship between chemical structure and anticancer activity was examined, C and EC did not show antiproliferative effects, and GA showed some antiproliferative effects. When C and EC esterified with GA to produce CG and ECG, the antiproliferative effects were increased significantly. A similar relationship was found between EGC and EGCG. The gallic acid group significantly enhanced catechin's anticancer potential. This property could be utilized in future semi-synthesis of flavonoid derivatives to develop novel anticancer agents. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceItabe H (AUG 2009) Clinical reviews in allergy & immunology 37 1 4--11
Oxidative modification of LDL: its pathological role in atherosclerosis.
Oxidized low-density lipoprotein (OxLDL) is a well-known risk marker for cardiovascular diseases. OxLDL has shown a variety of proatherogenic properties in experiments performed in vitro. In addition, immunological studies using monoclonal antibodies have revealed the occurrence of OxLDL in vivo in atherosclerotic lesions and patients' plasma specimens. Resent clinical studies have indicated the prospective significance of plasma OxLDL measurements; however, the behavior and metabolism of OxLDL in vivo is poorly understood. The mechanism by which LDL is oxidized is not clear, and the modified structures of OxLDL are not yet fully understood, partly because OxLDL is a mixture of heterogeneously modified particles. Here, I discuss the recent studies on oxidative modifications in OxLDL and its clinical and pathological features. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceShankar S et al. (JAN 2008) Frontiers in bioscience : a journal and virtual library 13 440--52
EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer.
We have shown that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, inhibits growth and induces apoptosis in human pancreatic cancer cells. However, the preclinical potential of EGCG in a suitable mouse model has not been examined. In this study, we examined the molecular mechanisms by which EGCG inhibited growth, invasion, metastasis and angiogenesis of human pancreatic cancer cells in a xenograft model system. EGCG inhibited viability, capillary tube formation and migration of HUVEC, and these effects were further enhanced in the presence of an ERK inhibitor. In vivo, AsPC-1 xenografted tumors treated with EGCG showed significant reduction in volume, proliferation (Ki-67 and PCNA staining), angiogenesis (vWF, VEGF and CD31) and metastasis (MMP-2, MMP-7, MMP-9 and MMP-12) and induction in apoptosis (TUNEL), caspase-3 activity and growth arrest (p21/WAF1). EGCG also inhibited circulating endothelial growth factor receptor 2 (VEGF-R2) positive endothelial cells derived from xenografted mice. Tumor samples from EGCG treated mice showed significantly reduced ERK activity, and enhanced p38 and JNK activities. Overall, our data suggest that EGCG inhibits pancreatic cancer growth, invasion, metastasis and angiogenesis, and thus could be used for the management of pancreatic cancer prevention and treatment. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceLee WJ et al. (OCT 2005) Molecular pharmacology 68 4 1018--30
Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids.
In the present investigation, we studied the modulating effects of several tea catechins and bioflavonoids on DNA methylation catalyzed by prokaryotic SssI DNA methyltransferase (DNMT) and human DNMT1. We found that each of the tea polyphenols [catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate (EGCG)] and bioflavonoids (quercetin, fisetin, and myricetin) inhibited SssI DNMT- and DNMT1-mediated DNA methylation in a concentration-dependent manner. The IC(50) values for catechin, epicatechin, and various flavonoids ranged from 1.0 to 8.4 microM, but EGCG was a more potent inhibitor, with IC(50) values ranging from 0.21 to 0.47 microM. When epicatechin was used as a model inhibitor, kinetic analyses showed that this catechol-containing dietary polyphenol inhibited enzymatic DNA methylation in vitro largely by increasing the formation of S-adenosyl-L-homocysteine (a potent noncompetitive inhibitor of DNMTs) during the catechol-O-methyltransferase-mediated O-methylation of this dietary catechol. In comparison, the strong inhibitory effect of EGCG on DNMT-mediated DNA methylation was independent of its own methylation and was largely due to its direct inhibition of the DNMTs. This inhibition is strongly enhanced by Mg(2+). Computational modeling studies showed that the gallic acid moiety of EGCG plays a crucial role in its high-affinity, direct inhibitory interaction with the catalytic site of the human DNMT1, and its binding with the enzyme is stabilized by Mg(2+). The modeling data on the precise molecular mode of EGCG's inhibitory interaction with human DNMT1 agrees perfectly with our experimental finding. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceNakagawa H et al. (MAR 2002) Biochemical and biophysical research communications 292 1 94--101
Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death.
To propose candidates for the prevention or treatment of osteoporosis, we have screened compounds naturally in food for their ability to regulate the differentiation and function of osteoclasts. One of the major green tea flavonoids, (-)-epigallocatechin-3-gallate (EGCG), was found to induce apoptotic cell death of osteoclast-like multinucleated cells after 24 h treatment in a dose-dependent manner (25-100 microM), whereas osteoblasts were not affected. In the present study, we report for the first time a novel cell-death-inducing mechanism triggered by EGCG. The induction of apoptosis by EGCG was suppressed by pretreatment of catalase or calcitonin. It was also suppressed by Fe(III) and Fe(II) chelators. Furthermore, EGCG promoted the reduction of Fe(III) into Fe(II), and the combination of EGCG/Fe(III)/H(2)O(2) induced single-strand DNA breakage in a cell free system. These results indicate that the Fenton reaction is primarily involved in EGCG-induced osteoclastic cell death. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceAhmad N et al. (APR 2000) Archives of biochemistry and biophysics 376 2 338--46
Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells.
Green tea has shown remarkable anti-inflammatory and cancer chemopreventive effects in many animal tumor bioassays, cell culture systems, and epidemiological studies. Many of these biological effects of green tea are mediated by epigallocatechin 3-gallate (EGCG), the major polyphenol present therein. We have earlier shown that EGCG treatment results in apoptosis of several cancer cells, but not of normal cells (J. Natl. Cancer Inst. 89, 1881-1886 (1997)). The mechanism of this differential response of EGCG is not known. In this study, we investigated the involvement of NF-kappaB during these differential responses of EGCG. EGCG treatment resulted in a dose-dependent (i) inhibition of cell growth, (ii) G0/G1-phase arrest of the cell cycle, and (iii) induction of apoptosis in human epidermoid carcinoma (A431) cells, but not in normal human epidermal keratinocytes (NHEK). Electromobility shift assay revealed that EGCG (10-80 microM) treatment results in lowering of NF-kappaB levels in both the cytoplasm and nucleus in a dose-dependent manner in both A431 cells and NHEK, albeit at different concentrations. EGCG treatment was found to result in a dose-based differential inhibition of TNF-alpha- and LPS-mediated activation of NF-kappaB in these cells. The inhibition of NF-kappaB constitutive expression and activation in NHEK was observed only at high concentrations. The immunoblot analysis also demonstrated a similar pattern of inhibition of the constitutive expression as well as activation of NF-kappaB/p65 nuclear protein. This inhibition of TNF-alpha-caused NF-kappaB activation was mediated via the phosphorylative degradation of its inhibitory protein IkappaBalpha. Taken together, EGCG was found to impart differential dose-based NF-kappaB inhibitory response in cancer cells vs normal cells; i.e., EGCG-mediated inhibition of NF-kappaB constitutive expression and activation was found to occur at much higher dose of EGCG in NHEK as compared to A431 cells. This study suggests that EGCG-caused cell cycle deregulation and apoptosis of cancer cells may be mediated through NF-kappaB inhibition. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceYoshida H et al. (DEC 1999) Biochemical pharmacology 58 11 1695--703
Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein.
Dietary flavonoid intake has been reported to be inversely related to mortality from coronary heart disease, and the anti-atherosclerotic effect of flavonoids is considered to be due probably to their antioxidant properties. Oxidation of low density lipoprotein (LDL) has been reported to be induced by the constituent cells of the arterial wall. Accordingly, we examined the effect of pretreatment with tea flavonoids, such as theaflavin digallate, on the ability of cells to oxidize LDL. Theaflavin digallate pretreatment of macrophages or endothelial cells reduced cell-mediated LDL oxidation in a concentration- (0-400 microM) and time- (0-4 hr) dependent manner. This inhibitory effect of flavonoids on cell-mediated LDL oxidation was in the order of theaflavin digallate textgreater theaflavin textgreater or = epigallocatechin gallate textgreater epigallocatechin textgreater gallic acid. Further, we investigated the mechanisms by which flavonoids inhibited cell-mediated LDL oxidation using macrophages and theaflavin digallate. Theaflavin digallate pretreatment decreased superoxide production of macrophages and chelated iron ions significantly. These results suggest that tea flavonoids attenuate the ability of the cell to oxidize LDL, probably by reducing superoxide production in cells and chelating iron ions. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate - ReferenceFré et al. (JAN 1999) Life sciences 64 26 2511--21
Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids.
Wine polyphenols were examined for their capacity to protect the lipid and protein moieties of porcine low density lipoproteins (LDL) during oxidation. The efficiency of resveratrol (3, 4', 5, trihydroxystilbene) and defined flavonoids was compared to that of a wine extract (WE) containing 0.5 g/g proanthocyanidols. The efficiency of resveratrol for protecting polyunsaturated fatty acids (PUFA) was higher than that of flavonoids in copper-induced oxidation and lower in AAPH (radical initiator)-induced oxidation. The LDL receptor activity was evaluated by flow cytometry using LDL labeled with fluorescein isothiocyanate (FITC) and Chinese hamster ovary cells (CHO-K1). The incubation of CHO-K1 with FITC-LDL oxidized for 16 h reduced the proportion of fluorescent cells from 97% to 4%. At a concentration of 40 microM, resveratrol and flavonoids completely restored the uptake of copper-oxidized LDL and AAPH-oxidized LDL respectively. Total fluorescence could also be obtained with 20 mg/L of WE with both oxidation systems. These data are consistent with previous findings relative to the formation of degradative products from PUFA. They confirm that resveratrol was more effective than flavonoids as a chelator of copper and less effective as a free-radical scavenger. Moreover, they show that WE, which contained monomeric and oligomeric forms of flavonoids and phenolic acids, protected LDL by both mechanisms. View PublicationCatalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate
Shop By
Filter Results
Filters: