Showing 1 - 10 of 10 results for "72592"
8 Products
- ReferenceJaremko KL and Marikawa Y (MAY 2013) Stem cell research 10 3 489--502
Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells.
Human embryonic stem cells (hESCs) can self-renew and become all three germ layers. Nodal/Activin signaling specifies developmental status in hESCs: moderate Nodal/Activin signaling maintains pluripotency, while enhancement and inhibition promote definitive endoderm (DE) and neuroectoderm (NE) development, respectively. However, how modulation of Nodal/Activin signaling influences developmental competence and commitment toward specific lineages is still unclear. Here, we showed that enhancement of Nodal/Activin signaling for 4 days was necessary and sufficient to upregulate DE markers, while it diminished the upregulation of NE markers by inhibition of Nodal/Activin signaling. This suggests that after 4 days of enhanced Nodal/Activin signaling, hESCs are committed to the DE lineage and have lost competence toward the NE lineage. In contrast, inhibition of Nodal/Activin signaling using LY364947 for 2 days was sufficient to impair competence toward the DE lineage, although cells were still able to activate LEFTY1 and NODAL, direct targets of Nodal/Activin signaling. Expression analyses indicated that the levels of pluripotency regulators NANOG and POU5F1 were significantly diminished by 2 days of LY364947 treatment, although the expression of NANOG, but not POU5F1, was restored immediately upon Activin A treatment. Thus, downregulation of POU5F1 coincided with the abrogation of DE competence caused by inhibition of Nodal/Activin signaling. View PublicationCatalog #: Product Name: 85850 mTeSR™1 72592 LY364947 Catalog #: 85850 Product Name: mTeSR™1 Catalog #: 72592 Product Name: LY364947 - ReferenceNaka K et al. (FEB 2010) Nature 463 7281 676--80
TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia.
Chronic myeloid leukaemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL, a constitutively active tyrosine kinase. It is widely believed that BCR-ABL activates Akt signalling that suppresses the forkhead O transcription factors (FOXO), supporting the proliferation or inhibiting the apoptosis of CML cells. Although the use of the tyrosine kinase inhibitor imatinib is a breakthrough for CML therapy, imatinib does not deplete the leukaemia-initiating cells (LICs) that drive the recurrence of CML. Here, using a syngeneic transplantation system and a CML-like myeloproliferative disease mouse model, we show that Foxo3a has an essential role in the maintenance of CML LICs. We find that cells with nuclear localization of Foxo3a and decreased Akt phosphorylation are enriched in the LIC population. Serial transplantation of LICs generated from Foxo3a(+/+) and Foxo3a(-/-) mice shows that the ability of LICs to cause disease is significantly decreased by Foxo3a deficiency. Furthermore, we find that TGF-beta is a critical regulator of Akt activation in LICs and controls Foxo3a localization. A combination of TGF-beta inhibition, Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo. Furthermore, the treatment of human CML LICs with a TGF-beta inhibitor impaired their colony-forming ability in vitro. Our results demonstrate a critical role for the TGF-beta-FOXO pathway in the maintenance of LICs, and strengthen our understanding of the mechanisms that specifically maintain CML LICs in vivo. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferenceIchida JK et al. (NOV 2009) Cell stem cell 5 5 491--503
A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog.
The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-beta signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog. View PublicationCatalog #: Product Name: 72392 RepSox (Hydrochloride) 73792 RepSox 72232 SB431542 (Hydrate) 72592 LY364947 Catalog #: 72392 Product Name: RepSox (Hydrochloride) Catalog #: 73792 Product Name: RepSox Catalog #: 72232 Product Name: SB431542 (Hydrate) Catalog #: 72592 Product Name: LY364947 - ReferenceLi Z et al. (JUN 2010) Journal of cellular and molecular medicine 14 6A 1338--46
Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway.
This study investigated the effect of mechanical load on human mesenchymal stem cell (hMSC) differentiation under different exogenous transforming growth factor-beta1 (TGF-beta(1)) concentrations (0, 1 or 10 ng/ml).The role of the TGF-beta signalling pathway in this process was also studied. Human MSCs were seeded into fibrin-biodegradable polyurethane scaffolds at a cell density of 5 x 10(6) cells per scaffold and stimulated using our bioreactor. One hour of surface motion superimposed on cyclic compression was applied once a day over seven consecutive days. Scaffolds were analysed for gene expression, DNA content and glycosaminoglycan amount. Addition of TGF-beta(1) in the culture medium was sufficient to induce chondrogenesis of hMSCs. Depending on the TGF-beta(1) concentration of the culture medium, mechanical load stimulated chondrogenesis of hMSCs compared to the unloaded scaffolds, with a much stronger effect on gene expression at lower TGF-beta(1) concentrations. With TGF-beta(1) absent in the culture medium, mechanical load stimulated gene transcripts and protein synthesis of TGF-beta(1) and TGF-beta(3). TGF-beta type I receptor inhibitor LY364947 blocked the up-regulation on TGF-beta(1) and TGF-beta(3) production stimulated by mechanical load, and also blocked the chondrogenesis of hMSCs. Taken together, these findings suggest that mechanical load promotes chondrogenesis of hMSCs through TGF-beta pathway by up-regulating TGF-beta gene expression and protein synthesis. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferenceKokudo T et al. (OCT 2008) Journal of cell science 121 20 3317--24
Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells.
Epithelial-mesenchymal transition (EMT) plays important roles in various physiological and pathological processes, and is regulated by signaling pathways mediated by cytokines, including transforming growth factor beta (TGFbeta). Embryonic endothelial cells also undergo differentiation into mesenchymal cells during heart valve formation and aortic maturation. However, the molecular mechanisms that regulate such endothelial-mesenchymal transition (EndMT) remain to be elucidated. Here we show that TGFbeta plays important roles during mural differentiation of mouse embryonic stem cell-derived endothelial cells (MESECs). TGFbeta2 induced the differentiation of MESECs into mural cells, with a decrease in the expression of the endothelial marker claudin 5, and an increase in expression of the mural markers smooth muscle alpha-actin, SM22alpha and calponin, whereas a TGFbeta type I receptor kinase inhibitor inhibited EndMT. Among the transcription factors involved in EMT, Snail was induced by TGFbeta2 in MESECs. Tetracycline-regulated expression of Snail induced the differentiation of MESECs into mural cells, whereas knockdown of Snail expression abrogated TGFbeta2-induced mural differentiation of MESECs. These results indicate that Snail mediates the actions of endogenous TGFbeta signals that induce EndMT. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferenceSato T et al. (JUL 2008) Cancer science 99 7 1407--13
Evi-1 promotes para-aortic splanchnopleural hematopoiesis through up-regulation of GATA-2 and repression of TGF-b signaling.
Evi-1 is a zinc-finger transcriptional factor whose inappropriate expression leads to leukemic transformation in mice and humans. Recently, it has been shown that Evi-1 regulates proliferation of hematopoietic stem/progenitor cells at embryonic stage via GATA-2 up-regulation; however, detailed mechanisms underlying Evi-1-mediated early hematopoiesis are not fully understood. We therefore evaluated hematopoietic potential of Evi-1 mutants using a cultivation system of murine para-aortic splanchnopleural (P-Sp) regions, and found that both the first zinc finger domain and the acidic domain were required for Evi-1-mediated hematopoiesis. The hematopoietic potential of Evi-1 mutants was likely to be related to its ability to up-regulate GATA-2 expression. We also showed that the decreased colony forming capacity of Evi-1-deficient P-Sp cells was successfully recovered by inhibition of TGF-b signaling, using ALK5 inhibitor or retroviral transfer of dominant-negative-type Smad3. Our findings suggest that Evi-1 promotes hematopoietic stem/progenitor expansion at the embryonic stage through up-regulation of GATA-2 and repression of TGF-beta signaling. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferenceShiou S-R et al. (NOV 2006) The Journal of biological chemistry 281 45 33971--81
Smad4-dependent regulation of urokinase plasminogen activator secretion and RNA stability associated with invasiveness by autocrine and paracrine transforming growth factor-beta.
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion. Autocrine transforming growth factor-beta (TGF-beta) signaling may play an important role in cancer cell invasion and metastasis; however, the underlying mechanisms remain unclear. In the present study, we report that autocrine TGF-beta supports cancer cell invasion by maintaining uPA levels through protein secretion. Interestingly, treatment of paracrine/exogenous TGF-beta at higher concentrations than autocrine TGF-beta further enhanced uPA expression and cell invasion. The enhanced uPA expression by exogenous TGF-beta is a result of increased uPA mRNA expression due to RNA stabilization. We observed that both autocrine and paracrine TGF-beta-mediated regulation of uPA levels was lost upon depletion of Smad4 protein by RNA interference. Thus, through the Smad pathway, autocrine TGF-beta maintains uPA expression through facilitated protein secretion, thereby supporting tumor cell invasiveness, whereas exogenous TGF-beta further enhances uPA expression through mRNA stabilization leading to even greater invasiveness of the cancer cells. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferenceLi H-y et al. (MAR 2006) Journal of medicinal chemistry 49 6 2138--42
Dihydropyrrolopyrazole transforming growth factor-beta type I receptor kinase domain inhibitors: a novel benzimidazole series with selectivity versus transforming growth factor-beta type II receptor kinase and mixed lineage kinase-7.
Novel dihydropyrrolopyrazole-substituted benzimidazoles were synthesized and evaluated in vitro as inhibitors of transforming growth factor-beta type I receptor (TGF-beta RI), TGF-beta RII, and mixed lineage kinase-7 (MLK-7). These compounds were found to be potent TGF-beta RI inhibitors and selective versus TGF-beta RII and MLK-7 kinases. Benzimidazole derivative 8b was active in an in vivo target (TGF-beta RI) inhibition assay. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferencePeng S-B et al. (FEB 2005) Biochemistry 44 7 2293--304
Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition.
Transforming growth factor beta (TGF-beta) signaling pathways regulate a wide variety of cellular processes including cell proliferation, differentiation, extracellular matrix deposition, development, and apoptosis. TGF-beta type-I receptor (TbetaRI) is the major receptor that triggers several signaling events by activating downstream targets such as the Smad proteins. The intracellular kinase domain of TbetaRI is essential for its function. In this study, we have identified a short phospho-Smad peptide, pSmad3(-3), KVLTQMGSPSIRCSS(PO4)VS as a substrate of TbetaRI kinase for in vitro kinase assays. This peptide is uniquely phosphorylated by TbetaRI kinase at the C-terminal serine residue, the phosphorylation site of its parent Smad protein in vivo. Specificity analysis demonstrated that the peptide is phosphorylated by only TbetaRI and not TGF-beta type-II receptor kinase, indicating that the peptide is a physiologically relevant substrate suitable for kinetic analysis and screening of TbetaRI kinase inhibitors. Utilizing pSmad3(-3) as a substrate, we have shown that novel pyrazole compounds are potent inhibitors of TbetaRI kinase with K(i) value as low as 15 nM. Kinetic analysis revealed that these pyrazoles act through the ATP-binding site and are typical ATP competitive inhibitors with tight binding kinetics. More importantly, these compounds were shown to inhibit TGF-beta-induced Smad2 phosphorylation in vivo in NMuMg mammary epithelial cells with potency equivalent to the inhibitory activity in the in vitro kinase assay. Cellular selectivity analysis demonstrated that these pyrazoles are capable of inhibiting activin signaling but not bone morphogenic protein or platelet-derived growth factor signal transduction pathways. Further functional analysis revealed that pyrazoles are capable of blocking the TGF-beta-induced epithelial-mesenchymal transition in NMuMg cells, a process involved in the progression of cancer, fibrosis, and other human diseases. These pyrazoles provide a foundation for future development of potent and selective TbetaRI kinase inhibitors to treat human disease. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947 - ReferenceSawyer JS et al. (SEP 2003) Journal of medicinal chemistry 46 19 3953--6
Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain.
Pyrazole-based inhibitors of the transforming growth factor-beta type I receptor kinase domain (TbetaR-I) are described. Examination of the SAR in both enzyme- and cell-based in vitro assays resulted in the emergence of two subseries featuring differing selectivity versus p38 MAP kinase. A common binding mode at the active site has been established by successful cocrystallization and X-ray analysis of potent inhibitors with the TbetaR-I receptor kinase domain. View PublicationCatalog #: Product Name: 72592 LY364947 Catalog #: 72592 Product Name: LY364947
8 Products
Shop By
Filter Results
Filters:
- Resource Type Reference Remove This Item
- Clear All
- Area of Interest
-
- Cancer 1 item
- Stem Cell Biology 1 item
- Brand
-
- TeSR 1 item
- Cell Type
-
- Pluripotent Stem Cells 1 item